請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4543完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭鴻基(Hung-Chi Kuo) | |
| dc.contributor.author | Yu-Yu Lin | en |
| dc.contributor.author | 林佑宇 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:43:11Z | - |
| dc.date.available | 2016-03-27 | |
| dc.date.available | 2021-05-14T17:43:11Z | - |
| dc.date.copyright | 2015-08-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-11 | |
| dc.identifier.citation | Arakawa, a., J. H. Jung, and C. M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 3731–3742, doi:10.5194/acp-11-3731-2011.
Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale environment, {P}art {I}. J. Atmos. Sci., 31, 674–701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2. Bretherton, C. S., and M. C. Wyant, 1997: Moisture Transport, Lower-Tropospheric Stability, and Decoupling of Cloud-Topped Boundary Layers. J. Atmos. Sci., 54, 148–167, doi:10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2. ——, and P. N. Blossey, 2014: Low cloud reduction in a greenhouse-warmed climate: Results from Lagrangian les of a subtropical marine cloudiness transition. J. Adv. Model. Earth Syst., 6, 91–114, doi:10.1002/2013MS000250. Connolly, P. J., G. Vaughan, P. Cook, G. Allen, H. Coe, T. W. Choularton, C. Dearden, and a. Hill, 2013: Modelling the effects of gravity waves on stratocumulus clouds observed during VOCALS-UK. Atmos. Chem. Phys., 13, 7133–7152, doi:10.5194/acp-13-7133-2013. http://www.atmos-chem-phys.net/13/7133/2013/. Garreaud, R. D., and R. Munoz, 2004: The diurnal cycle in circulation and cloudiness over the subtropical southeast Pacific: A modeling study. J. Clim., 17, 1699–1710, doi:10.1175/1520-0442(2004)017<1699:TDCICA>2.0.CO;2. Ghate, V. P., B. a. Albrecht, M. a. Miller, A. Brewer, and C. W. Fairall, 2014: Turbulence and radiation in stratocumulus-topped marine boundary layers: A case study from VOCALS-REx. J. Appl. Meteorol. Climatol., 53, 117–135, doi:10.1175/JAMC-D-12-0225.1. Jiang, Q., and S. Wang, 2012: Impact of Gravity Waves on Marine Stratocumulus Variability. J. Atmos. Sci., 120802091525000, doi:10.1175/JAS-D-12-0135.1. Jones, C., C. Bretherton, and P. Blossey, 2014: Fast stratocumulus time scale in mixed layer model and large eddy simulation. J. Adv. Model. Earth Syst., 1–17, doi:10.1002/2013MS000289.Received. http://onlinelibrary.wiley.com/doi/10.1002/2013MS000289/abstract. Jung, J.-H., and A. Arakawa, 2008: A Three-Dimensional Anelastic Model Based on the Vorticity Equation. Mon. Weather Rev., 136, 276–294, doi:10.1175/2007MWR2095.1. Jung, J.-H., and A. Arakawa, 2010: Development of a quasi-3D multiscale modeling framework: Motivation, basic algorithm and preliminary results. J. Adv. Model. Earth Syst., 2, doi:10.3894/JAMES.2010.2.11. Kuo, H.-C., and W. H. Schubert, 1988: Stability of cloud-topped boundary layers. Q. J. R. Meteorol. Soc., 114, 887–916, doi:10.1002/qj.49711448204. http://doi.wiley.com/10.1002/qj.49711448204. Lilly, D., 1968: Models of cloud‐topped mixed layers under a strong inversion. Q. J. R. Meteorol. Soc., 94, 292–309, doi:10.1002/qj.49709440106. http://onlinelibrary.wiley.com/doi/10.1002/qj.49709440106/abstract. Martin, G. M., D. W. Johnson, D. P. Rogers, P. R. Jonas, P. Minnis, and D. A. Hegg, 1995: Observations of the Interaction between Cumulus Clouds and Warm Stratocumulus Clouds in the Marine Boundary Layer during ASTEX. J. Atmos. Sci., 52, 2902–2922, doi:10.1175/1520-0469(1995)052<2902:OOTIBC>2.0.CO;2. Rahn, D. a., and R. D. Garreaud, 2009: Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx – Part 2: Synoptic variability. Atmos. Chem. Phys. Discuss., 9, 26063–26094, doi:10.5194/acpd-9-26063-2009. Randall, D. a., 1980: Conditional instability of the first kind upside-down. doi:10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2. De Roode, S. R., P. G. Duynkerke, and H. J. J. Jonker, 2004: Large-Eddy Simulation: How Large is Large Enough? J. Atmos. Sci., 61, 403–421, doi:10.1175/1520-0469(2004)061<0403:LSHLIL>2.0.CO;2. Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979a: Marine Stratocumulus Convection. Part I: Governing Equations and Horizontally Homogeneous Solutions. J. Atmos. Sci., 36, 1286–1307, doi:10.1175/1520-0469(1979)036<1286:MSCPIG>2.0.CO;2. http://journals.ametsoc.org/doi/abs/10.1175/1520-0469(1979)036<1286:MSCPIG>2.0.CO;2. ——, ——, ——, and ——, 1979b: Marine Stratocumulus Convection. part II: Horizontally Inhomogeneous Solutions. J. Atmos. Sci., 36, 1308–1324, doi:10.1175/1520-0469(1979)036<1308:MSCPIH>2.0.CO;2. Stevens, B., 2000: Cloud transitions and decoupling in shear-free stratocumulus-topped boundary layers. Geophys. Res. Lett., 27, 2557–2560, doi:10.1029/1999GL011257. Stevens, B., 2006: Bulk boundary-layer concepts for simplified models of tropical dynamics. Theor. Comput. Fluid Dyn., 20, 279–304, doi:10.1007/s00162-006-0032-z. ——, and Coauthors, 2001: Simulations of Trade Wind Cumuli under a Strong Inversion. J. Atmos. Sci., 58, 1870–1891, doi:10.1175/1520-0469(2001)058<1870:SOTWCU>2.0.CO;2. ——, and Coauthors, 2005: Evaluation of Large-Eddy Simulations via Observations of Nocturnal Marine Stratocumulus. Mon. Weather Rev., 133, 1443–1462, doi:10.1175/MWR2930.1. Turton, J. D., and S. Nicholls, 1987: A Study of the Diurnal Variation of Stratocumulus Using A Multiple Mixed Layer Model. Q. J. R. Meteorol. Soc., 113, 969–1009, doi:10.1002/qj.49711347712. http://dx.doi.org/10.1002/qj.49711347712. Wang, Q., and D. H. Lenschow, 1995: An Observational Study of the Role of Penetrating Cumulus in a Marine Stratocumulus-Topped Boundary Layer. J. Atmos. Sci., 52, 2778–2787, doi:10.1175/1520-0469(1995)052<2778:AOSOTR>2.0.CO;2. Wilhelmson, R. B., and C.-S. Chen, 1982: A Simulation of the Development of Successive Cells Along a Cold Outflow Boundary. J. Atmos. Sci., 39, 1466–1483, doi:10.1175/1520-0469(1982)039<1466:ASOTDO>2.0.CO;2. Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Clim., 17, 3576–3588, doi:10.1175/1520-0442(2004)017<3576:BLDEAD>2.0.CO;2. Wood, R., C. S. Bretherton, B. Huebert, C. R. Mechoso, and R. Weller, 2007: The VAMOS Ocean-Cloud-Atmospher-Land Study: Program Summary. Program,. Zhang, Y., B. Stevens, and M. Ghil, 2005: On the diurnal cycle and susceptibility to aerosol concentration in a stratocumulus-topped mixed layer. Q. J. R. Meteorol. Soc., 131, 1567–1583, doi:10.1256/qj.04.103. http://doi.wiley.com/10.1256/qj.04.103. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4543 | - |
| dc.description.abstract | This study aims to understand the impacts of gravity waves on the cloud fraction and vertical structures of stratocumulus topped boundary layer (STBL) under two strat-ocumulus regimes. The impact of such gravity waves on STBL is investigated using a high-resolution vector vorticity equation based cloud resolving model (VVM) (Jung and Arakawa 2008; Wu and Arakawa 2011) by adding large-scale convergence that mimics observed mesoscale semidiurnal waves.
The results show that the wave induced vertical velocity causes STBL to become decoupled. During the ascending phase, the cloud is lifted and thickens. With larger cloud amount, Entrainment-Liquid Flux feedback (ELF) starts to adjust by enhancing cloud top entrainment and cloud base warming, which causes STBL to become decou-pled. Furthermore, the results show that the vertical structure and cloud fraction at the end of simulation is largely determined by the sea surface fluxes. The experiment with weaker surface fluxes causes STBL to break up by limiting Surface-based Mixed Layer (SML) cumuliform clouds. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:43:11Z (GMT). No. of bitstreams: 1 ntu-104-R02229017-1.pdf: 4873726 bytes, checksum: 6cf69d2ed9705a6d93054afea54f547d (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Contents III Figure Captions V Table Captions VII 1. Introduction 1 1.1 The formation of stratocumulus 2 1.2 Physical process involved in stratocumulus 2 1.2.1 Cloud top radiative cooling and sea surface fluxes 2 1.2.2 Entrainment and cloud top entrainment instability (CTEI) 4 1.2.3 Large scale subsidence 6 1.3 Vertical structure of stratocumulus-topped boundary layer 7 1.3.1 Buoyancy Integral Ratio (BIR) 8 1.3.2 Total water mixing ratio difference (qtd) 9 1.4 Adjustment time scale in STBL 10 1.4.1 Internal adjustment time scale 10 1.4.2 Fast time scale adjustment (Entrainment-Liquid water Flux feed back) 11 2. Motivation 12 3. Methodology 15 3.1 Vector Vorticity cloud resolving Model (VVM) 16 3.2 The Second Dynamics and Chemistry of Marine Stratocumulus field study (DYCOMS-II) 17 3.3 The VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS) 18 3.4 Mesoscale wave forcing 19 3.5 VVM domain size 20 4. Results and Analysis 21 4.1 High frequency waves 21 4.2 Semi-diurnal Waves 24 4.3 Analysis—STBL decoupling in Regime I 29 4.3.1 How STBL evolved into decoupled structure? 29 4.3.2 Turbulence intensity, inversion height and decoupling 31 4.4 Analysis—Cloud coverage response in Regime II 34 5. Conclusion and future work 41 5.1 Conclusion 41 5.2 Future work 44 References 46 Tables 50 Figures 52 Appendix A Inversion height hysteresis 71 Appendix B Mass flux analysis 75 Appendix C Abreviations and notations 78 Appendix D Vertical stretching grid 81 Appendix E Simple radiation scheme 83 Appendix F Variables deriviation 84 | |
| dc.language.iso | en | |
| dc.subject | 表面通量 | zh_TW |
| dc.subject | 邊界層 | zh_TW |
| dc.subject | 層積雲 | zh_TW |
| dc.subject | 邊界層分離 | zh_TW |
| dc.subject | 中尺度重力波動 | zh_TW |
| dc.subject | stratocumulus | en |
| dc.subject | STBL | en |
| dc.subject | stratocumulus-topped boundary layer | en |
| dc.subject | surface flux | en |
| dc.subject | entrainment | en |
| dc.subject | decoupling | en |
| dc.subject | upsidence wave | en |
| dc.title | 重力波動對層積雲系統垂直結構及雲量之影響 | zh_TW |
| dc.title | Impact of Gravity Waves on Marine Stratocumulus
Variability: Vertical Structures and Cloud Coverage | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 吳健銘(Chien-Ming Wu) | |
| dc.contributor.oralexamcommittee | 蘇世顥(Shih-Hao Su),羅敏輝(Min-Hui Lo),黃彥婷(Yen-Ting Hwang) | |
| dc.subject.keyword | 邊界層,層積雲,邊界層分離,中尺度重力波動,表面通量, | zh_TW |
| dc.subject.keyword | stratocumulus,upsidence wave,decoupling,entrainment,surface flux,stratocumulus-topped boundary layer,STBL, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-08-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 4.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
