請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45375完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李佳翰(Jia-Han Li) | |
| dc.contributor.author | Yu-Mei Chang | en |
| dc.contributor.author | 張玉玫 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:16:50Z | - |
| dc.date.available | 2016-09-20 | |
| dc.date.copyright | 2011-09-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-17 | |
| dc.identifier.citation | [1]S. Hales and C. o. C. Library, Statical essays: containing haemastaticks: Hafner, 1964.
[2]S. Hales, Vegetable Staticks: Or, an Account of Some Statical Experiments on the Sap in Vegetables: Being an Essay Towards a Natural History of Vegetation. Also, a Specimen of an Attempt to Analyse the Air, By a Great Variety of Chymio-Statical Experiments; Which Were Read at Several Meetings Before the Royal Society. By Steph. Hales, BDFRS Rector of Farringdon, Hampshire, and Minister of Teddington, Middlesex: printed for W. and J. Innys, at the West End of St. Paul's; and T. Woodward, over-against St. Dunstan's Church in Fleetstreet, 1727. [3]G. Haberlandt, 'Die Lichtsinnesorgane der Laubblatter,' Leipzig: W. Engelmann. Perception by leaves. General article Review article, Leaf anatomy, Light (PMBD, 185002238), 1905. [4]G. Haberlandt, Physiologische pflanzenanatomie: W. Engelmann, 1896. [5]G. R. Fleming and G. D. Scholes, 'Quantum mechanics for plants,' Proc. Natl Acad. Sci. USA, vol. 101, pp. 10639-10643, 2004. [6]M. Sarovar, A. Ishizaki, G. R. Fleming, K. B. Whaley, 'Quantum entanglement in photosynthetic light-harvesting complexes,' Nature Physics, vol. 6, pp. 462-467, 2010. [7]A. A. Pascal, Z. Liu, K. Broess, B. Van Oort, H. Van Amerongen, C. Wang, P. Horton, B. Robert, W. Chang, A. Ruban, 'Molecular basis of photoprotection and control of photosynthetic light-harvesting,' Nature, vol. 436, pp. 134-137, 2005. [8]T. Vogelmann and J. Evans, 'Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence,' Plant, Cell & Environment, vol. 25, pp. 1313-1323, 2002. [9]D. W. Lee and R. Graham, 'Leaf optical properties of rainforest sun and extreme shade plants,' American Journal of Botany, vol. 73, pp. 1100-1108, 1986. [10]D. W. Lee, R. A. Bone, S. L. Tarsis, D. Storch, 'Correlates of leaf optical properties in tropical forest sun and extreme-shade plants,' American Journal of Botany, vol. 77, pp. 370-380, 1990. [11]L. Fukshansky, 'Photon transport in leaf tissue: applications in plant physiology,' Photon-Vegetation Interactions. R. Myneni and J. Ross, Editors. Springer-Verlag, Berlin, pp. 253-302, 1991. [12]L. Fukshansky, 'Optical properties of plants,' Plants and the daylight spectrum, pp. 21-39, 1981. [13]P. M. Vitousek, P. R. Ehrlich, A. H. Ehrlich, P. A. Matson, 'Human appropriation of the products of photosynthesis,' BioScience, vol. 36, pp. 368-373, 1986. [14]D. R. Ort and C. F. Yocum, Oxygenic photosynthesis: the light reactions: Kluwer Academic Publishers, 1996. [15]J. M. Anderson, Y. I. Park, W. S. Chow, 'Unifying model for the photoinactivation of photosystem II in vivo under steady-state photosynthesis,' Photosynthesis Research, vol. 56, pp. 1-13, 1998. [16]E. I. Rabinowitch, 'Photosynthesis and related processes,' Soil Science, vol. 72, p. 482, 1951. [17]P. H. Raven, R. F. Evert, S. E. Eichhorn, Biology of plants: WH Freeman, 2005. [18]K. Asami and T. Yamaguchi, 'Dielectric spectroscopy of plant protoplasts,' Biophysical journal, vol. 63, pp. 1493-1499, 1992. [19]A. Dobek, G. Paillotin, J. Gapiski, J. Breton, W. Leibl, H. W. Trissl, 'Amplitude and polarity of the light gradient photovoltage from chloroplasts,' Journal of theoretical biology, vol. 170, pp. 129-143, 1994. [20]R. E. Hausler, S. Geimer, H. H. Kunz, J. Schmitz, P. Dormann, K. Bell, S. Hetfeld, A. Guballa, U. I. Flugge, 'Chlororespiration and grana hyperstacking: How an Arabidopsis double mutant can survive despite defects in starch biosynthesis and daily carbon export from chloroplasts,' Plant physiology, vol. 149, p. 515, 2009. [21]L. A. Staehelin, 'Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes,' Discoveries in Photosynthesis, pp. 717-728, 2005. [22]L. Finzi, C. Bustamante, G. Garab, C. B. Juang, 'Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy,' Proceedings of the National Academy of Sciences of the United States of America, vol. 86, p. 8748, 1989. [23]J. Dodge, 'The fine structure of chloroplasts and pyrenoids in some marine dinoflagellates,' Journal of Cell Science, vol. 3, p. 41, 1968. [24]B. Gunning, 'The fine structure of chloroplast stroma following aldehyde osmium-tetroxide fixation,' The Journal of Cell Biology, vol. 24, p. 79, 1965. [25]N. A. Campbell, B. Williamson, R. J. Heyden, 'Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall,' 2006. [26]L. Mustardy and G. Garab, 'Granum revisited. A three-dimensional model-where things fall into place,' Trends in plant science, vol. 8, pp. 117-122, 2003. [27]I. Lee, J. W. Lee, R. J. Warmack, D. P. Allison, E. Greenbaum, 'Molecular electronics of a single photosystem I reaction center: studies with scanning tunneling microscopy and spectroscopy,' Proceedings of the National Academy of Sciences of the United States of America, vol. 92, p. 1965, 1995. [28]V. k. m. p. s. c. z. řas, 'Confocal microscopy of the green-algal chloroplast,' Czech Phycology, vol. 4, pp. 183-190, 2004. [29]羅聖全、賴明偉、徐偉盛、李世莉、陳淑貞、林麗娟. TEM 三維斷層掃描顯像技術在高分子奈米複合材料之應用. [30]L. Mustardy, K. Buttle, G. Steinbach, G. Garab, 'The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly,' The Plant Cell Online, vol. 20, p. 2552, 2008. [31]E. Shimoni, O. Rav-Hon, I. Ohad, V. Brumfeld, Z. Reich, 'Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography,' The Plant Cell Online, vol. 17, p. 2580, 2005. [32]D. M. Gates, H. J. Keegan, J. C. Schleter, V. R. Weidner, 'Spectral properties of plants,' Applied optics, vol. 4, pp. 11-20, 1965. [33]K. B. Lam, E. A. Johnson, M. Chiao, L. Lin, 'A MEMS photosynthetic electrochemical cell powered by subcellular plant photosystems,' Microelectromechanical Systems, Journal of, vol. 15, pp. 1243-1250, 2006. [34]M. H. Ham, J. H. Choi, A. A. Boghossian, E. S. Jeng, R. A. Graff, D. A. Heller, A. C. Chang, A. Mattis, T. H. Bayburt, Y. V. Grinkova, 'Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate,' Nature Chemistry, vol. 2, pp. 929-936, 2010. [35]Y. Amao and K. Kato, 'Chlorophyll assembled electrode for photovoltaic conversion device,' Electrochimica Acta, vol. 53, pp. 42-45, 2007. [36]I. Bedja, S. Hotchandani, R. Carpentier, R. W. Fessenden, P. V. Kamat, 'Chlorophyll b modified nanocrystalline SnO2 semiconductor thin film as a photosensitive electrode,' Journal of applied physics, vol. 75, pp. 5444-5446, 1994. [37]D. Gust, T. A. Moore, A. L. Moore, 'Mimicking photosynthetic solar energy transduction,' Accounts of Chemical Research, vol. 34, pp. 40-48, 2001. [38]A. Ulatowska-Jarza, U. Bindig, H. Podbielska, I. H. Owacz, K. W. Str, G. Muller, H. J. Eichler, 'Spectroscopic properties of a chlorophyll-based photosensitive dye entrapped in sol-gel fibre-optic applicators,' Materials Science-Poland, vol. 23, 2005. [39]M. T. Dedeo, K. E. Duderstadt, J. M. Berger, M. B. Francis, 'Nanoscale protein assemblies from a circular permutant of the tobacco mosaic virus,' Nano letters, vol. 10, pp. 181-186, 2009. [40]A. Taflove and M. E. Brodwin, 'Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations,' Microwave Theory and Techniques, IEEE Transactions on, vol. 23, pp. 623-630, 1975. [41]K. Yee, 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,' Antennas and Propagation, IEEE Transactions on, vol. 14, pp. 302-307, 1966. [42]A. Taflove and S. C. Hagness, 'Computational electrodynamics: the finite-difference time-domain method,' 2000. [43]'國立科學工藝博物館', http://wmsg01.csu.edu.tw/csitshow/csitcomc/ee2c-no-2/SUN.htm. [44]P. Vukusic, 'Photonic structures in biology,' Nature, vol. 424, pp. 852-855, 2004. [45]'Lumerical FDTD Solutions ', http://www.lumerical.com/. [46]K. -H. Ling Long, C. Shiang Jiuun, 'General Botany ', National Taiwan University, 2010. [47]廖玉婉、徐善德、林美華、謝永祥、吳弘達、鍾仁彬, 植物生理學, 第三版, 啟英文化事業有限公司, 1999. [48]C. Yao, Y. Mi, C. Li, X. Hu, X. Chen, C. Sun, 'Study of transmembrane potentials on cellular inner and outer membrane-Frequency response model and its filter characteristic simulation,' Biomedical Engineering, IEEE Transactions on, vol. 55, pp. 1792-1799, 2008. [49]G. Fuhr, P. Rosch, T. Muller, V. Dressier, H. Goring, 'Dielectric spectroscopy of chloroplasts isolated from higher plants characterization of the double-membrane system,' Plant and cell physiology, vol. 31, p. 975, 1990. [50]J. M. Anderson, 'The role of chlorophyll-protein complexes in the function and structure of chloroplast thylakoids,' Molecular and cellular biochemistry, vol. 46, pp. 161-172, 1982. [51]P. A. Albertsson, 'The structure and function of the chloroplast photosynthetic membrane - a model for the domain organization,' Photosynthesis Research, vol. 46, pp. 141-149, 1995. [52]J. Barber, 'Influence of surface charges on thylakoid structure and function,' Annual Review of Plant Physiology, vol. 33, pp. 261-295, 1982. [53]O. Margalit, V. Sarafis, Z. Zalevsky, 'The effect of grana and inter-grana components of chloroplasts on green light transmission: A preliminary study,' Optik-International Journal for Light and Electron Optics, vol. 121, pp. 1439-1442, 2010. [54]P. A. Albertsson, 'A quantitative model of the domain structure of the photosynthetic membrane,' Trends in plant science, vol. 6, pp. 349-358, 2001. [55]J. J. Wolken, 'The structure of the chloroplast,' Annual Review of Plant Physiology, vol. 10, pp. 71-86, 1959. [56]F. Bazzaz and R. W. Carlson, 'Photosynthetic acclimation to variability in the light environment of early and late successional plants,' Oecologia, vol. 54, pp. 313-316, 1982. [57]S. Murakami and L. Packer, 'Protonation and chloroplast membrane structure,' The Journal of Cell Biology, vol. 47, p. 332, 1970. [58]A. Mostowska, 'Thylakoid and grana formation during the development of pea chloroplasts, illuminated by white, red, and blue low intensity light,' Protoplasma, vol. 134, pp. 88-94, 1986. [59]S. Murakami and L. Packer, 'Light-induced changes in the conformation and configuration of the thylakoid membrane of Ulva and Porphyra chloroplasts in vivo,' Plant Physiology, vol. 45, p. 289, 1970. [60]C. Lutz, H. K. Seidlitz, U. Meindl, 'Physiological and structural changes in the chloroplast of the green alga Micrasterias denticulata induced by UV-B simulation,' Plant Ecology, vol. 128, pp. 55-64, 1997. [61]H. Lichtenthaler, C. Buschmann, M. Doll, H. J. Fietz, T. Bach, U. Kozel, D. Meier, U. Rahmsdorf, 'Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves,' Photosynthesis Research, vol. 2, pp. 115-141, 1981. [62]J. E. M. Ballantine and B. Forde, 'The effect of light intensity and temperature on plant growth and chloroplast ultrastructure in soybean,' American Journal of Botany, pp. 1150-1159, 1970. [63]M. J. Kasperbauer and J. L. Hamilton, 'Chloroplast structure and starch grain accumulation in leaves that received different red and far-red levels during development,' Plant Physiology, vol. 74, p. 967, 1984. [64]T. Y. Leong, D. J. Goodchild, J. M. Anderson, 'Effect of light quality on the composition, function, and structure of photosynthetic thylakoid membranes of Asplenium australasicum (Sm.) Hook,' Plant Physiology, vol. 78, p. 561, 1985. [65]S. Murakami and L. Packer, 'The role of cations in the organization of chloroplast membranes,' Archives of Biochemistry and Biophysics, vol. 146, pp. 337-347, 1971. [66]P. N. Prasad, Introduction to biophotonics: LibreDigital, 2003. [67]H. Stijger, 'All colours in light are equal for photosynthesis,' Flower Tech, vol. 7, pp. 9-11, 2004. [68]G. A. Carter and A. K. Knapp, 'Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration,' American Journal of Botany, vol. 88, p. 677, 2001. [69]D. Paolillo, 'The three-dimensional arrangement of intergranal lamellae in chloroplasts,' Journal of Cell Science, vol. 6, p. 243, 1970. [70]D. V. Wettstein, 'The formation of plastid structures,' 1959, pp. 138-159. [71]W. Wehrmeyer, 'Zur Klarung der strukturellen Variabilitat der Chloroplastengrana des Spinats in Profil und Aufsicht,' Planta, vol. 62, pp. 272-293, 1964. [72]J. Brangeon and L. Mustardy, 'Ontogenetic assembly of intra-chloroplastic lamellae viewed in 3-dimension,' Biol Cell, vol. 36, pp. 71-80, 1979. [73]M. Liberton, R. B. Howard, J. Heuser, R. Roth, H. B. Pakrasi, 'Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803,' Protoplasma, vol. 227, pp. 129-138, 2006. [74]S. G. Chuartzman, R. Nevo, E. Shimoni, D. Charuvi, V. Kiss, I. Ohad, V. Brumfeld, Z. Reich, 'Thylakoid membrane remodeling during state transitions in Arabidopsis,' The Plant Cell Online, vol. 20, p. 1029, 2008. [75]R. Nevo, S. G. Chuartzman, O. Tsabari, Z. Reich, D. Charuvi, E. Shimoni, 'Architecture of thylakoid membrane networks,' Lipids in Photosynthesis, pp. 295-328, 2009. [76]J. R. Austin and L. A. Staehelin, 'Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography,' Plant Physiology, vol. 155, p. 1601, 2011. [77]'Solar Spectra', http://rredc.nrel.gov/solar/spectra/. [78]'Photosynthesis', http://www.uic.edu/classes/bios/bios100/lecturesf04am/lect10.htm. [79]張孝邦, '運用電磁理論與生物實驗探討植物光合作用結構的光學特性,' 工程科學及海洋工程學系, 國立台灣大學, 2009. [80]J. Nield, E. V. Orlova, E. P. Morris, B. Gowen, M. V. Heel, J. Barber, '3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis,' Nature Structural & Molecular Biology, vol. 7, pp. 44-47, 2000. [81]K. R. Miller and L. A. Staehelin, 'Analysis of the thylakoid outer surface. Coupling factor is limited to unstacked membrane regions,' The Journal of Cell Biology, vol. 68, p. 30, 1976. [82]L. Bumba and F. Vacha, 'Electron microscopy in structural studies of Photosystem II,' Photosynthesis Research, vol. 77, pp. 1-19, 2003. [83]D. Kaftan, V. Brumfeld, R. Nevo, A. Scherz, Z. Reich, 'From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes,' The EMBO Journal, vol. 21, pp. 6146-6153, 2002. [84]R. Nevo, D. Charuvi, E. Shimoni, R. Schwarz, A. Kaplan, I. Ohad, Z. Reich, 'Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria,' The EMBO Journal, vol. 26, pp. 1467-1473, 2007. [85]G. Paillotin, W. Leibl, J. Gapinski, J. Breton, A. Dobek, 'Light gradients in spherical photosynthetic vesicles,' Biophysical journal, vol. 75, pp. 124-133, 1998. [86]F. M. Garlaschi, G. Zucchelli, R. C. Jennings, 'Studies on light absorption and photochemical activity changes in chloroplast suspensions and leaves due to light scattering and light filtration across chloroplast and vegetation layers,' Photosynthesis Research, vol. 20, pp. 207-220, 1989. [87]K. R. Naqvi, M. N. Merzlyak, T. B. Melo, 'Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers¡VKronig relations,' Photochem. Photobiol. Sci., vol. 3, pp. 132-137, 2003. [88]P. Horton, 'Hypothesis: Are grana necessary for regulation of light harvesting?,' Functional Plant Biology, vol. 26, pp. 659-669, 1999. [89]B. Halliwell, Chloroplast metabolism. The structure and function of chloroplasts in green leaf cells: Oxford.: Clarendon Press, 1981. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45375 | - |
| dc.description.abstract | 植物藉著光合作用以進行氧化–還原的過程來獲取太陽能量,將光能有效的轉換成化學能。葉綠體以及類囊體為優良的太陽能發電廠來藉此捕獲太陽能。近年來,三維影像重建技術已趨於成熟,藉由發生光合作用之葉綠餅的三維影像,我們使用時域有限差分法之光學模擬軟體計算光傳播到葉綠體的光場分佈,光吸收率,直徑、堆疊層數、傾斜角度、波長皆為本文所要探討的重點參數。另外,我們萃取菠菜內的葉綠體,塗佈在不同製程階段的太陽能板上,以藉此了解葉綠餅結構分佈於不同製程階段的太陽能板上之光學特性。我們的研究結果說明葉綠體的複雜結構能有效的使光傳播到葉綠體內,將萃取出來的葉綠體應用在太陽能板上,也可以有一定的能量吸收效果,藉此證明我們所建立的植物模型具有潛力可應用在獲取太陽能能量元件上,甚至可以成功的製作出仿生的太陽能系統。 | zh_TW |
| dc.description.abstract | Plants obtain solar energy through photosynthesis with oxidation-reduction process, and they can efficiently convert light energy into chemical energy. The photosynthesis is mainly occurred in the chloroplasts. The chloroplasts and grana are good solar power plants to capture the solar energy. In recent years, the three-dimensional (3D) image reconstruction technology is more matured, so we can simulate the light distributions in the photosynthesis structures in chloroplasts and grana by using the three-dimensional images. We use the finite-difference time-domain (FDTD) method to calculate the electric field and absorbed light power for energy transmitting to the chloroplasts and grana. Therefore, we study the effects of the diameter, stacked layers, tilt angles, and wavelengths on light absorption of grana. To understand the optical properties of chloroplast being applied on the semiconductor-based solar cells, we extracted the chloroplasts of spinach and coated them in the silicon solar cells substrates which are in several specific fabrication steps. Our results indicate that the complex structures of the grana can effectively capture and guide light. The experimental results also show the chloroplasts isolation can have good energy absorption by using in solar cells. The results prove the model we build can be applied to the device of effectively guiding light. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:16:50Z (GMT). No. of bitstreams: 1 ntu-100-R98525032-1.pdf: 24631993 bytes, checksum: f65ffd7afac01d33b47c2cbccfd5cdf1 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 ......................................................i
中文摘要 .................................................ii ABSTRACT ................................................iii STATEMENT OF CONTRIBUTIONS ...............................iv CONTENTS ..................................................v LIST OF FIGURES .........................................vii Chapter 1 Introduction ....................................1 1.1 Literature review .....................................1 1.2 Motivations ...........................................3 1.3 Framework .............................................4 Chapter 2 Plant Basics and Electromagnetic Theory .........5 2.1 The Properties of Light ...............................5 2.2 Photosynthesis ........................................6 2.3 Green Energy Machine .................................11 2.4 Grana Structure ......................................12 2.5 Photosynthetic Pigments ..............................15 2.6 3D Map of the Thyalkoid Membrane Structure............16 2.7 Electromagnetic Theory ...............................17 Chapter 3 Simulation Settings and Results of Nanophotonic Structures for Grana .....................................30 3.1 Simulation Settings ..................................30 3.2 Simulation Results ...................................33 3.3 Chapter Summary ......................................36 Chapter 4 Experiments and Measurement ....................68 4.1 Experimental Materials ...............................68 4.2 The Steps of Chloroplast Isolation ...................69 4.3 Coating Process ......................................70 4.4 Analyzing and Measurement ............................71 4.5 Chapter Summary ......................................73 Chapter 5 Conclusion and Future Works ....................85 5.1 Conclusion ...........................................85 5.2 Future Works .........................................87 APPENDIX .................................................88 REFERENCE ................................................91 VITA ....................................................101 | |
| dc.language.iso | en | |
| dc.subject | 3D 影像重建技術 | zh_TW |
| dc.subject | 葉綠體 | zh_TW |
| dc.subject | 類囊體 | zh_TW |
| dc.subject | 葉綠餅 | zh_TW |
| dc.subject | 時域有限差分法 | zh_TW |
| dc.subject | thylakoid | en |
| dc.subject | 3D image reconstruction technology | en |
| dc.subject | finite-difference time-domain method | en |
| dc.subject | grana | en |
| dc.subject | chloroplast | en |
| dc.title | 利用電磁模擬探討葉綠餅的傾斜角度對光吸收特性之影響及實驗研究葉綠體附著於太陽能電池表面之反射率 | zh_TW |
| dc.title | Using Electromagnetic Simulations to Study the Effects of Grana Tilt Angle on Light Absorption and Experimental Study of Reflections for the Chloroplast Coating on the Surface of Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許文翰(Wen-Hann Sheu),王淑珍(Shu-Jen Wang),李坤彥(Kung-Yen Lee) | |
| dc.subject.keyword | 葉綠體,類囊體,葉綠餅,時域有限差分法,3D 影像重建技術, | zh_TW |
| dc.subject.keyword | chloroplast,thylakoid,grana,finite-difference time-domain method,3D image reconstruction technology, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 24.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
