請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4532
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡曜陽(Yao-Yang Tsai) | |
dc.contributor.author | Kim-Thong Bong | en |
dc.contributor.author | 黃金通 | zh_TW |
dc.date.accessioned | 2021-05-14T17:43:04Z | - |
dc.date.available | 2015-08-16 | |
dc.date.available | 2021-05-14T17:43:04Z | - |
dc.date.copyright | 2015-08-16 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-12 | |
dc.identifier.citation | 1. 張心紜,急起直追,2016年與全球先進國家同步,能源報導,2014年10月
2. Conrad U. Brunner, Efficient Electric Motor Systems, Motor Summit 2014 3. Szpunar, B, & Szpunar, J.A. Influence of Stresses on the Hysteresis Curve in Constructional Steel. IEEE Transactions on Magnetics, Vol.20, 1882–1884 (1984). 4. Nakata, T., Nakano, M. & Kawahara, K. Effects of Stress Due to Cutting on Magnetic Characteristics of Silicon Steel. IEEE Translation Journal on Magnetics in Japan, Vol.7, 453–457 (1992). 5. Hou, C.K, & Lee, S, Effect of Rolling Strain on the Loss Separation and Permeability of Lamination Steels. IEEE Transactions on Magnetics, Vol.30, 212–216 (1994). 6. Hug, E., Hubert, O. & Clavel, M. Some Aspects of the Magnetomechanical Coupling in the Strengthening of Non-oriented and Grain-oriented 3% Si-fe Alloys. IEEE Transactions on Magnetics, Vol.33, 763–771 (1997). 7. Landgraf, F. J. G., Emura, M., Ito, K. & Carvalho, P. S. G. Effect of Plastic Deformation on the Magnetic Properties of Non-oriented Electrical Steels. Journal of magnetism and magnetic materials, Vol.215, 94–96 (2000). 8. Ossart, F., Hug, E., Hubert, O., Buvat, C. & Billardon, R. Effect of Punching on Electrical Steels: Experimental and Numerical Coupled Analysis. IEEE Transactions on Magnetics, Vol.36, 3137–3140 (2000). 9. Emura, M., Landgraf, F. J. G., Ross, W. & Barreta, J. R. The Influence of Cutting Technique on the Magnetic Properties of Electrical Steels. Journal of Magnetism and Magnetic Materials, Vol.254, 358–360 (2003). 10. Maurel, V., Ossart, F. & Billardon, R. Residual Stresses in Punched Laminations: Phenomenological Analysis and Influence on the Magnetic Behavior of Electrical Steels. Journal of Applied Physics, Vol.93, 7106–7108 (2003). 11. Baudouin, P., De Wulf, M., Kestens, L. & Houbaert, Y. The Effect of the Guillotine Clearance on the Magnetic Properties of Electrical Steels. Journal of magnetism and magnetic materials, Vol.256, 32–40 (2003). 12. Iordache, V. E. & Hug, E. Effect of Mechanical Strains on the Magnetic Properties of Electrical Steels. Journal of Optoelectronics and Advanced Materials, Vol.6, 1297–1303 (2004). 13. Takezawa, M., Kitajima, K., Morimoto, Y., Yamasaki, J. & Kaido, C. Effect of Strain by Mechanical Punching on Nonoriented Si-Fe Electrical Sheets for a Nine-Slot Motor Core. IEEE Transactions on Magnetics, Vol.42, 2790–2792 (2006). 14. Kurosaki, Y., Mogi, H., Fujii, H., Kubota, T. & Shiozaki, M. Importance of Punching and Workability in Non-oriented Electrical Steel Sheets. Journal of Magnetism and Magnetic Materials 320, 2474–2480 (2008). 15. Nakazaki, O., Kai, Y., Todaka, T. & Enokizono, M. Iron Loss Properties of a Practical Rotating Machine Stator Core at Each Manufacturing Stage. International Journal of Applied Electromagnetics and Mechanics, Vol.33, (2010). 16. Yamamoto, K. & Yanase, S. Magnetic Properties of Non-Oriented Electrical Steels under Compressive Stress Normal to Their Surface. Przegląd Elektrotechniczny, Vol.87, 97–100 (2011). 17. Kai, Y., Tsuchida, Y., Todaka, T. & Enokizono, M. Evaluation of Local Residual Stress Distribution of Stator Core in a Rotating Machine. Electrical Engineering in Japan, Vol.181, 1–8 (2012). 18. Jeong.K, Y & Park, C.-H. & Koh, C.-S. Comparison of Iron Loss at Different Manufacturing Process of Actual Stator Core. 2013 International Conference on Electrical Machines and Systems (ICEMS), 523–525 (IEEE, 2013). 19. Vandenbossche, L. et al. Iron Loss Modelling Which Includes the Impact of Punching, Applied to High-efficiency Induction Machines. Electric Drives Production Conference (EDPC), 2013 3rd International, 1–10 (IEEE, 2013) 20. Senda, K., Fujita, A., Honda, A., Kuroki, N. & Yagi, M. Magnetic Properties and Domain Structure of Non-oriented Electrical Steel Under Stress. IEEJ Transactions on Fundamentals and Materials, Vol.131, 884–890 (2011). 21. Kashiwara, Y., Fujimura, H., Okamura, K., Imanishi, K. & Yashiki, H. Estimation Model for Magnetic Properties of Stamped Electrical Steel Sheet. Electrical Engineering in Japan, Vol.183, 1–11 (2013). 22. Kuo, S.K., Lee, W.C., Lin, S.Y. & Lu, C.-Y. The Influence of Cutting Edge Deformations on Magnetic Performance Degradation of Electrical Steel. 17th International Conference on Electrical Machines and Systems (ICEMS), 3041–3046 (IEEE, 2014). 23. 賴袁璋,“精密剪斷之有限元素分析”,國立交通大學碩士論文,民國90年 24. Litman, T. Efficient Electric Motor Systems Handbook. (Prentice Hall, 1995). 25. Saidur, R. A Review on Electrical Motors Energy Use and Energy Savings. Renewable and Sustainable Energy Reviews, Vol.14, 877–898 (2010). 26. B, WANG. & S.WANG. Study and Manufacture of Meet NEMA Standard’s Premium Three-Phase Explosion Proof Asynchronous Motor. Electric Machines & Control Application, Vol.2, 003 (2011). 27. http://zh.wikipedia.org/wiki/鐵損 28. 蕭一清,黃議興等人,“電動車驅動馬達用電磁鋼片開發”,礦冶54/2(2010) 29. Yabumoto, M., Kaido, C., Wakisaka, T., Kubota, T. & Suzuki, N. Electrical Steel Sheet for Traction Motor of Hybrid/Electric Vehicles. SHINNITTETSU GIHO 51–54 (2003). 30. Landgraf, F. J. G. & Emura, M. Losses and Permeability Improvement by Stress Relieving Fully Processed Electrical Steels with Previous Small Deformations. Journal of magnetism and magnetic materials, Vol.242, 152–156 (2002). 31. 吳建諭,“繞線製程案例分享”, 智能馬達技術應用與產業發展研討會,2012 32. 余俊德,“附V型壓環之精密剪斷有限元素分析”, 國立交通大學碩士論文,2003 33. 周開華,“簡明精沖手冊第二版”,國防工業出版社,2005 34. Partech Corporation, Minneapolis, http://www.partechfineblanking.com/ 35. National Programme on Technology Enhanced Learning, “Manufacturing Process I (Web)”, nptel.ac.in 36. MISUMI INDIA Pvt Ltd., India, http://in.misumi-ec.com 37. Sonmez, F. O. & Demir, A. Analytical Relations Between Hardness and Strain for Cold Formed Parts. Journal of materials processing technology, Vol.186, 163–173 (2007). 38. Tabor, D. The Hardness of Metals, Clarendon Press, New York, 1951. 39. Baudouin, P. & Houbaert, Y. The Study of Two Different Strain Paths on the Deterioration of the Magnetic Properties of Non-oriented Electrical Steels. Journal of magnetism and magnetic materials, Vol.260, 19–22 (2003). 40. 中國鋼鐵股份有限公司,電磁鋼捲型錄 41. 戴宜傑, 徐有材,“沖壓加工與沖模設計”, 東喬出版社 ,1981. 42. Pulnikov,A. B.Philippe. & M.Jan. Induced Stresses Due to the Mechanical Cutting of Non-oriented Electrical Steels. Journal of magnetism and magnetic materials, Vol.254, 355-357 (2003). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4532 | - |
dc.description.abstract | 電磁鋼片在加工過程中會因為殘留應力以及塑性應變的產生造成電磁特性惡化進而影響馬達的整體效率。直到現在,電磁鋼片的電磁特性在加工過程中惡化的情況仍然無法預估及掌握。這是造成電動機生產後實際效率與設計效率產生落差的原因之一。
為了更加了解電磁鋼片在沖壓加工製程中造成的影響,本研究設計了一套定子槽形沖壓模具,包括了82°、86.7°、88°的夾角角度以及0.25mm、1mm、2mm、6mm的倒角半徑。 在固定槽形的條件下,分析沖頭速度、壓料板壓力、反壓板壓力以及沖頭行程模式對加工硬化面積的影響。 實驗結果顯示提高沖頭速度、沖頭行程模式為振動模式、在適當的壓料板壓力及反壓板壓力下,電磁鋼片沖壓切邊於直線部位的加工硬化面積相較於其他沖壓參數明顯降低。本實驗的最佳沖壓參數相較於本實驗的其他沖壓參數,最大可減少0.0379mm2的加工硬化面積,相當於減少56%。 另外在固定沖壓製程參數的條件下,分析定子槽夾角角度與倒角半徑對加工硬化區的影響,實驗結果顯示倒角半徑越大在倒角部位會造成越小的加工硬化面積,最大減少1.340mm2的加工硬化面積,相當於增加92%;夾角角度越大則有減小加工硬化區的效果,最大減少0.5202mm2的加工硬化面積,相當於減少36% | zh_TW |
dc.description.abstract | In the punching process, the iron loss of the electrical steel sheet will increase dramatically due to the plastic strain. So far, the iron loss effect of electrical steel sheet in the punching process may be difficult to predict and control. This effect also reduces the overall efficiency of the motor.
In this research, the plastic strain of electrical steel in the punching process is determined by the working hardening theory. In order to create the plastic strain, a punching mold of stator slot was designed, including 82.0°, 86.7°, 88.0° angle between two lines and 0.25mm, 1mm, 2mm, 6mm fillet radius. Under the fixed geometry, the influence of punching speed, blank holder pressure, counter punch pressure and punching mode on hardening area are measured. The results show that the hardening area is reduced by raising the punching speed, punching with vibration mode, and punching with appropriate blank holder and counter punch pressure. In addition, under the fixed punching parameters, the influence of the angle between two lines and the fillet radius of the stator slot on hardening area are analyzed. The hardening area decreases along with the larger fillet radius and the larger angle between two lines. | en |
dc.description.provenance | Made available in DSpace on 2021-05-14T17:43:04Z (GMT). No. of bitstreams: 1 ntu-104-R02522738-1.pdf: 3497978 bytes, checksum: ce245bbc76452cf80ead96e27e0b65d4 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌 謝 II 摘 要 IV Abstract V 目 錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 研究動機與目的 6 1.4 論文大綱 8 第二章 相關技術理論介紹 9 2.1 電動機的基本構造 9 2.2 電動機的耗損分類 9 2.2.1 定子與轉子繞組耗損(Stator Losses And Rotor Losses) 10 2.2.2 定子及轉子鐵心耗損(Core Losses) 11 2.2.3 雜散耗損(Additional Load Losses) 13 2.2.4 風磨耗損(Windage and Friction) 13 2.3 電動機定子製程特性分析 14 2.3.1 電磁鋼片單片切割 16 2.3.2 疊層鉚合及焊接 17 2.3.3 退火熱處理 17 2.3.4 繞線製程 18 2.3.5 固定封裝 18 2.4 沖壓理論 18 2.4.1 沖壓參數的意義 18 2.4.2 精密下料的工作原理 20 2.4.3 沖壓斷面之分析 20 2.4.4 沖壓過程中金屬的塑性變形 22 2.4.5 沖壓過程中金屬的加工硬化 24 第三章 實驗步驟與方法 25 3.1 實驗規劃流程圖 25 3.1.1 沖壓製程參數對電磁鋼片的影響 26 3.1.2 定子槽幾何變化對電磁鋼片的影響 32 3.1.3 電磁鋼片的評估方法 33 3.2 實驗材料、實驗設備與量測儀器 35 3.2.1 實驗材料 35 3.2.2 實驗設備 36 3.2.3 量測儀器 43 3.3 實驗方法與步驟 45 3.3.1 建立塑性應變與電磁特性關係實驗步驟 45 3.3.2 建立塑性應變與加工硬化關係實驗步驟 47 3.3.3 沖壓製程參數對電磁鋼片的影響實驗步驟 48 3.3.4 定子槽幾何變化對電磁鋼片的影響實驗步驟 49 第四章 實驗結果與討論 50 4.1 建立塑性應變與電磁特性關係 50 4.2 建立塑性應變與加工硬化關係 50 4.3 沖壓製程參數對電磁鋼片加工硬化區的影響 52 4.3.1 假設與定義 52 4.3.2 沖頭速度對加工硬化面積之影響 56 4.3.3 壓料板壓力對加工硬化面積之影響 62 4.3.4 沖頭行程模式對加工硬化面積之影響 67 4.3.5 小結 71 4.4 定子槽形幾何變化對電磁鋼片加工硬化區的影響 72 4.4.1 定子槽寬度對加工硬化面積之影響 72 4.4.2 定子槽倒角半徑對加工硬化面積之影響 75 4.4.3 定子槽夾角角度對加工硬化面積之影響 77 4.4.4 小結 79 4.5 不同沖壓製程參數與定子槽形幾何對電磁鋼片加工硬化區之影響 80 4.6 討論 82 4.6.1 電磁特性分佈圖的推估 82 4.6.2 本研究可能出現的誤差 82 4.6.3 最大加工硬化距離的統計 83 第五章 結論與未來展望 91 5.1 結論 91 5.2 未來展望 92 參考文獻 94 作者簡歷 98 | |
dc.language.iso | zh-TW | |
dc.title | 沖壓製程對電磁鋼片加工硬化區之研究 | zh_TW |
dc.title | Work Hardening Zone of Electrical Steel in Punching Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陽毅平(Yee-Pien Yang),李貫銘(Kuan-Ming Li),陳國民(Kuo-Min Chen) | |
dc.subject.keyword | 沖孔,定子槽形,鐵損,伺服沖床,倒角半徑,夾角角度, | zh_TW |
dc.subject.keyword | Work hardening,Stator slot,Iron loss,Servo press,Fillet radius,Angle between two lines, | en |
dc.relation.page | 98 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2015-08-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf | 3.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。