Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45326
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏家鈺
dc.contributor.authorChing-En Tsengen
dc.contributor.author曾慶恩zh_TW
dc.date.accessioned2021-06-15T04:14:24Z-
dc.date.available2012-01-21
dc.date.copyright2010-01-21
dc.date.issued2010
dc.date.submitted2010-01-17
dc.identifier.citation[1]. G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE J. Select. Areas Commun., vol. 18, Mar., 2000.
[2]. G. Bolch, S, Greiner, H. D. Meer, and K. S. Trivedi, Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications, 2nd Edition, Wiley-Interscience, 2006.
[3]. C. G. Cassandras, and S. Lafortune, Introduction to Discrete Event Systems, Kluwer Academic Publishers, 1999.
[4]. F. Cuomo, E. Cipollone, and A. Abbagnale, “Performance analysis of IEEE 802.15.4 wireless sensor networks: An insight into the topology formation process,” Computer Networks, 2009.
[5]. A. L. Garcia, Probability, Statistics, and Random Processes for Electrical Engineering, 3rd Edition, Prentice Hall, 2008.
[6]. N. Golmie, D. Cypher, and O. Rebala, “Performance analysis of low rate wireless technologies for medical applications,” Computer Communications (Elsevier), vol. 28, pp. 1266-1275, 2005.
[7]. J. A. Gutierrez, E. H. Callaway, and R. L. Barrett, Low-Rate Wireless Personal Area Networks: Enabling Wireless Sensors with IEEE 802.15.4, IEEE Press, 2007.
[8]. IEEE 802.15.4 Standard: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Computer Society Press (2003), 1-679.
[9]. C. Y. Jung, H. Y. Hwang, D. K. Sung, and G. U. Hwang, “Enhanced Markov chain model and throughput analysis of the slotted CSMA/CA for IEEE 802.15.4 under unsaturated traffic conditions,” IEEE Transactions on Vehicular Technology, vol. 58, no. 1, Jan., 2009.
[10]. T. O. Kim, J. S. Park, H. J. Chong, K. J. Kim, and B. D. Choi, “Performance analysis of IEEE 802.15.4 non-beacon mode with the unslotted CSMA/CA,” IEEE Communication Letters, vol. 12, no. 4, pp. 238-240, 2008.
[11]. L. Kleinrock, Queueing Systems, Volume I: Theory, John Wiley & Sons, 1975.
[12]. L. Kleinrock, and F. A. Tobagi, “Packet switching in radio channels: part I-carrier sense multiple-access modes and their throughput-delay characteristics,” IEEE Transactions on Communications, vol. 23, pp. 1400-1416, 1975.
[13]. A. Koubaa, M. Alves, and E. Tovar, “A comprehensive simulation study of slotted CSMA/CA for IEEE 802.15.4 wireless sensor networks,” Proceedings of 6th IEEE International Workshop on Factory Communication Systems, Italy, 2006
[14]. G. Lu, B. Krishnamachari, and C. S. Raghavendra, “Performance evaluation of the IEEE 802.15.4 MAC for low-rate low-power wireless networks,” IEEE IPCCC, pp. 701-706, 2004.
[15]. V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman Hall, 1995.
[16]. S. Merz, and N. Navet, Modeling and Verification of Real-Time Systems, Wiley, 2008.
[17]. J. Mišić, and V. B. Mišić, “Access delay for nodes with finite buffers in IEEE 802.15.4 beacon enabled PAN with uplink transmissions,” Computer Communications, vol. 28, pp. 1152-1166. 2005.
[18]. J. Mišić, S. Shafi, and V. B. Mišić, “Performance of a beacon enabled IEEE 802.15.4 cluster with downlink and uplink traffic,” IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 4, pp. 361-376, April, 2006.
[19]. -, “Performance limitations of the MAC layer in 802.15.4 low rate WPAN,” Computer Communications, vol. 29, pp. 2534-2541, 2006.
[20]. C. Na, Y. Yang, and A. Mishra, “An optimal GTS scheduling algorithm for time-sensitive transactions in IEEE 802.15.4 networks,” Computer Networks, vol. 52, pp. 2543-2557, 2008.
[21]. T. R. Park, T. H. Kim, J. Y. Choi, S. Choi, and W. H. Kwon, “Throughput and energy computation analysis of IEEE 802.15.4 slotted CSMA/CA,” Electronics Letters, vol. 41, no. 18, pp. 1017-1019, 2008.
[22]. S. Pollin, M. Ergen, S. C. Ergen, B. Bougard, L. V. D. Peere, I. Moerman, A. Bahai, P. Varaiya, and F. Catthoor, “Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer,” IEEE Transactions on Wireless Communications, vol. 7, no. 9, pp. 3359-3371, September, 2008.
[23]. S. Y. Shin, H. S. Park, and W. H. Kwon, “Mutual interference analysis of IEEE 802.15.4 and IEEE 802.11b,” Computer Networks, vol. 51, pp. 3338-3353, 2007.
[24]. C. K. Singh, A. Kumar, and M. Ameer, “Performance evaluation of an IEEE 802.15.4 sensor networks with a star topology,” Wireless Networks, vol. 14, no. 4, pp. 543-568, 2008.
[25]. C. Suh, Z. H. Mir, and Y. B. Ko, “Design and implementation of enhanced IEEE 802.15.4 for supporting multimedia service in wireless sensor networks,” Computer Networks, vol. 52, pp. 2568-2581, 2008.
[26]. H. Takagi, Queueing Analysis - A Foundation of Performance Evaluation, Volume 3: Discrete-Time Systems, North Holland, 1990.
[27]. H. Takagi, and L. Kleinrock, “Optimal transmission range for randomly distributed packet radio terminals,” IEEE Transactions on Communications, vol. 32, no. 3, pp. 246-257, 1984.
[28]. N. F. Timmons, and W. G. Scanlon, “Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking,” Sensor and Ad Hoc Communication and Networks, Santa Clara, pp. 16-24, 2004.
[29]. L. Wu, and P. Varshney, “Performance analysis of CSMA and BTMA protocols in multihop networks (I). Single channel case,” Information Sciences (Elsevier), vol. 120, pp. 159-177, 1999.
[30]. J. Zheng, and M. J. Lee, A Comprehensive Performance Study of IEEE 802.15.4. IEEE Press.
[31]. -, “Will IEEE 802.15.4 make ubiquitous networking a reality? A discussion on a potential low power low bit rate standard,” IEEE Communication Magazines, vol. 42, pp. 140-146.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45326-
dc.description.abstractIEEE 802.15.4是針對低速率無線個人區域網路(low-rate wireless personal area networks, LR-WPANs)所發展之通訊協定,其中詳細定義了協定堆疊中之實體層(physical layer, PHY)與媒介存取控制層(medium access control layer, MAC),為Zigbee之底層規範,適用於各種以感測器網路系統。
在802.15.4標準中,定義了兩種型態的網路拓樸,一種為星狀拓樸(Star topology),其通訊鏈結建立在各裝置與一個中央控制器間(稱為coordinator),裝置之間無法進行聯繫,僅能透過coordinator交換資料,適合較單純與簡易之應用;另一種為對等拓樸(peer-to-peer topology),在通訊範圍之內,裝置可與任意其他裝置聯繫,屬於一種隨意網路(ad-hoc networks),具有自我組織(self-organizing)與自我修復(self-healing)之能力,只要有任意裝置在通訊範圍內,便可以不斷延伸擴展,且支援以多點跳躍(multi-hop)之方式將資料傳遞至遠端。叢集樹狀網路(cluster-tree networks)便是以對等拓樸為基礎衍生出來的特殊網路,適合較為複雜之網路應用,如工業監控、WSN、貨物與庫存追蹤、環境氣候量測等。
一般對於IEEE 802.15.4之效能研究,多集中在星狀拓樸,且各種指標之分析已非常詳細,然而在對等拓樸的分析與探討卻相當缺乏。本論文則針對對等拓樸中之叢集樹狀網路,提出一種結合馬可夫鏈(Markov chain)模型與佇列理論(queueing theory)之架構,分析其多點跳躍環境下之效能變化。由於叢集樹狀網路的結構複雜度較星狀網路提升很多,因此以往用於分析星狀網路之模型不再適用。本論文將以往之模型加以修正,以一簡化型馬可夫鏈描述裝置節點與傳輸頻道之動態行為,進而估測出各種狀態之切換機率。而以往經常使用之無限容量(infinite capacity)佇列模型,也修正為有限容量(finite capacity),以更加近似實際情況。
在效能指標方面,除了分析網路流通量( throughput)之外,也利用佇列模型估測網路之阻斷機率(blocking probability)。封包傳遞(packet delivery)方面則利用機率生成函數(probability generating function, PGF)描述佇列模型中之等候與服務時間,進而估計多點跳躍環境下難以預測之延遲時間。
zh_TW
dc.description.abstractIEEE 802.15.4 is a protocol developed for low-rate wireless personal area networks, LR-WPANs, which defined specifications to physical layer and medium access control (MAC) layer. It is the basis of Zigbee, and is suitable for sensor network systems.
It defines two types of topology structure in IEEE 802.15.4 standard; one is star topology, which contains one central controller (also named as coordinator) and many device nodes. The communication links exist only between individual devices and coordinator, and therefore it could be used in some simple applications. The other one is peer-to-peer topology, belongs to ad hoc networks with self-organizing and self-healing characteristics. It supports the multi-hop function to relay data to remote devices, and there are no any communication constraints between individual devices in RF range. Therefore the network could be extended recursively. Cluster-tree network is derived by peer-to-peer topology, and is suitable for more complicated applications, such as industrial monitoring, WSN, environmental measurement.
The research for IEEE 802.15.4 performance was primary focused on star topology, however, the peer-to-peer topology wasn’t be study in detail. This thesis combines Markov chain model and queueing theory to analyze the performance degradation under multi-hop networks. The complexity for cluster-tree networks is much more complicated than star networks, and therefore the simplified Markov chain model was proposed to estimate the transition probability between states. The infinite capacity queueing model was also modified as finite capacity to approximate real operation condition.
Some performance indices are analyzed in this research, including throughput, blocking probability, and packet delivery delay. The throughput was estimated by Markov chain channel model; the blocking probability was predicted by queueing model in device and relay; and the packet delay was derived by probability generating function (PGF) to describe the waiting and service time in queueing models.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:14:24Z (GMT). No. of bitstreams: 1
ntu-99-D91522019-1.pdf: 1333566 bytes, checksum: 111c57114e98f799e9fdc0b19265352c (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents第一章 序論…..………………………………………………….………1
1.1研究動機……………………………...…………………………………….….1
1.2文獻回顧…………………………………………...………………………......2
1.3主要貢獻…………………………………………………………..……………6
1.4論文架構………………………………………………………………………..7
第二章 IEEE 802.15.4與無線個人區域網路……………..…………….8
2.1 IEEE 802.15.4協定架構……………………………………………………….8
2.1.1網路裝置分類…………………………………………………………...9
2.1.2四種訊框形式………………………………………………………….12
2.1.3資料傳輸模式………………………………………………………….15
2.1.4功率消耗……………………………………………………………….17
2.1.5資料可靠性傳輸……………………………………………………….18
2.1.6 安全機制……………………………………………………………...18
2.2實體層協定…………………………………………………..………………..19
2.2.1操作頻帶與資料傳輸率……………………………………………….20
2.2.2頻道配置……………………………………………………………….22
2.2.3實體層服務…………………………………………………………….23
2.3 MAC層之訊框簡介…………………………………………………………..25
2.3.1信標訊框格式………………………………………………………….28
2.3.2 資料訊框格式…………………………….………………………......31
2.3.3確認訊框格式……………………………………………………….....31
2.3.4 MAC命令訊框格式…………………………………………………...31
第三章 IEEE 802.15.4之MAC層協定…………………...……………42
3.1 頻道存取………………..………………...………………………….………43
3.1.1 超訊框結構…………………………………………………………...43
3.1.2 訊框間隔……………………………………………………………...45
3.1.3 CSMA-CA演算法……………………………………………………..46
3.2 PAN之開啟與維護…………………….…………...…………..…………..49
3.2.1 頻道掃描……………………………………………………………...49
3.2.2 重複PAN識別碼……………………………………………………...55
3.2.3 PAN起始………………………………………………………………55
3.3 網路間之聯繫與解除………………..………………………………………56
3.4 同步化………………………..………………………………………………58
3.5 交易操作………………………………..……………………………………59
3.6 訊框之傳輸、接收與回覆…………….……………………………………..60
3.6.1 傳輸…………………………………………………………………...60
3.6.2 接收與拒絕…………………………………………………………...61
3.6.3自Coordinator擷取資料………………………………………………62
3.6.4 確認訊框之用...……………………………………………………....63
3.6.5 重新傳輸……………………………………………………………...64
3.7 GTS之分配與管理…………………………………………………………...65
3.7.1 GTS配置………………………………………………………………66
3.7.2 GTS使用………………………………………………………………67
3.7.3 GTS之配置解除………………………………………………………68
3.7.4 GTS之重新配置………………………………………………………69
3.7.5 GTS之終結……………………………………………………………70
第四章 MAC建模與效能分析………..……………….……………….71
4.1 CSMA-CA建模……………………………………………………………….72
4.1.1 裝置節點狀態建模…………………………………………………...73
4.1.2 裝置節點之封包服務時間…………………………………………...76
4.1.3 佇列容量之分佈…………………………………………………..….77
4.1.4 頻道狀態建模…………………………………………………..…….78
4.1.5 中繼器狀態建模……………………………………………..……….80
4.2 效能評估……………………………………………………………………..80
4.2.1 流量…………………………………………………………………...81
4.2.2 阻斷機率……………………………………………………………...81
4.2.3 封包延遲……………………………………………………………...81
4.3固定MAC協定參數,改變網路拓樸之效能分析…..………………………..82
4.3.1 星狀網路……………………………………………………………...82
4.3.2 具中繼點之星狀網路………………………………………………...88
4.3.3 叢集樹狀網路………………………………………………………...97
4.4固定網路拓樸,改變MAC協定參數之效能分析…………………………106
4.4.1 Contention Window設定為1………………………………………...107
4.4.2 Number of Backoff設定為3………………………………………....111
4.4.3 Backoff Exponent設定為(2,4)……………………………………….115
4.4.4 Contention Window設定為1與Number of Backoff設定為3………119
第五章 結論……………..…………………………………………….124
參考文獻………………………………………………………………...128
附錄……………………………………………………………………...132
dc.language.isozh-TW
dc.subject馬可夫鏈zh_TW
dc.subject媒介存取控制zh_TW
dc.subject佇列理論zh_TW
dc.subjectIEEE 802.15.4zh_TW
dc.subject多點跳躍zh_TW
dc.subject叢集樹狀網路zh_TW
dc.subject星狀網路zh_TW
dc.subjectstar networksen
dc.subjectIEEE 802.15.4en
dc.subjectmedium access control (MAC)en
dc.subjectMarkov chainen
dc.subjectqueueing theoryen
dc.subjectmulti-hopen
dc.subjectcluster-tree networksen
dc.titleIEEE 802.15.4協定下多點跳躍網路之建模與效能分析zh_TW
dc.titleModeling and Performance Analysis of Multi-hop Networks in IEEE 802.15.4en
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee王富正,吳光鐘,林啟萬,游忠煌
dc.subject.keywordIEEE 802.15.4,媒介存取控制,馬可夫鏈,佇列理論,多點跳躍,叢集樹狀網路,星狀網路,zh_TW
dc.subject.keywordIEEE 802.15.4,medium access control (MAC),Markov chain,queueing theory,multi-hop,cluster-tree networks,star networks,en
dc.relation.page134
dc.rights.note有償授權
dc.date.accepted2010-01-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved