Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45320
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張培仁(Pei-Zen Chang),施文彬(Wen-Pin Shih)
dc.contributor.authorChia-Wei Linen
dc.contributor.author林家緯zh_TW
dc.date.accessioned2021-06-15T04:14:06Z-
dc.date.available2015-01-21
dc.date.copyright2010-01-21
dc.date.issued2010
dc.date.submitted2010-01-18
dc.identifier.citation[1] N. Afreen and T. S. Kalkur, 'Matching networks implemented with high-K capacitors for high frequency amplifiers,' 2007, pp. 3-+.
[2] G. M. Rebeiz and J. B. Muldavin, 'RF MEMS switches and switch circuits,' Microwave Magazine, IEEE, vol. 2, pp. 59-71, 2001.
[3] G. M. Rebeiz, Rf Mems Theory, Design, and Technology: John Wiley & Sons Inc, 2004.
[4] C. L. Goldsmith, 'RF MEMS variable capacitors for tunable filters,' International Journal of RF and Microwave Computer-aided Engineering, vol. 9, p. 362, 1999.
[5] R. L. Borwick, III, P. A. Stupar, J. F. DeNatale, R. Anderson, and R. Erlandson, 'Variable MEMS capacitors implemented into RF filter systems,' Microwave Theory and Techniques, IEEE Transactions on, vol. 51, pp. 315-319, 2003.
[6] C. L. Goldsmith, Y. Zhimin, S. Eshelman, and D. Denniston, 'Performance of low-loss RF MEMS capacitive switches,' Microwave and Guided Wave Letters, IEEE, vol. 8, pp. 269-271, 1998.
[7] S. P. Pacheco and L. P. B. Katehi, 'Microelectromechanical K-Band Switching Circuits,' in European Microwave Conference, 1999. 29th, 1999, pp. 45-48.
[8] S. P. Pacheco, L. P. B. Katehi, and C. T. C. Nguyen, 'Design of low actuation voltage RF MEMS switch,' in Microwave Symposium Digest., 2000 IEEE MTT-S International, 2000, pp. 165-168 vol.1.
[9] C. Chang and P. Chang, 'Innovative micromachined microwave switch with very low insertion loss,' Sensors and Actuators A: Physical, vol. 79, pp. 71-75, 2000.
[10] S. Duffy, C. Bozler, S. Rabe, J. Knecht, L. Travis, P. Wyatt, C. Keast, and M. Gouker, 'MEMS microswitches for reconfigurable microwave circuitry,' Microwave and Wireless Components Letters, IEEE, vol. 11, pp. 106-108, 2001.
[11] R. Virchow, 'Ueber ein eigenthumliches Verhalten albuminoser Flussigkeiten bei Zusatz von Salzen,' Virchows Archiv, vol. 6, p. 571, 1854.
[12] C. Mettenheimer, Corr.-Blatt d. Vereins f. gem. Arbeit z. Ford. d. Wissensch. Heilkunde, vol. 24, p. 331, 1857.
[13] F. Reinitzer, 'Beitrage zur Kenntniss des Cholesterins,' Monatshefte fur Chemie (Wien), vol. 9, pp. 421-441, 1888.
[14] O. Lehmann, 'Uber fliessende Krystalle,' Zeitschrift fur Physikalische Chemie, vol. 4, pp. 462-472, 1889.
[15] G. Friedel, 'Les etats mesomorphes de la matiere,' Annales de Physique, vol. 19, pp. 273-474, 1922.
[16] I.-C. Khoo, Liquid crystals. Hoboken, N.J. :: Wiley-Interscience, 2007.
[17] H. Kelker, 'History of Liquid Crystals,' Molecular Crystals and Liquid Crystals, vol. 21, pp. 1 - 48, 1973.
[18] H. Kelker, 'Survey of the Early History of Liquid Crystals,' Molecular Crystals and Liquid Crystals, vol. 165, pp. 1 - 43, 1988.
[19] S. Chandrasekhar, Liquid crystals. New York, NY, USA :: Cambridge University Press, 1992.
[20] P. G. d. Gennes and J. Prost, The physics of liquid crystals. Oxford; New York: Clarendon Press ; Oxford University Press, 1993.
[21] D. Demus, Handbook of liquid crystals. Weinheim; New York: Wiley-VCH, 1998.
[22] P. Oswald, Nematic and cholesteric liquid crystals. Boca Raton :: Taylor & Francis, 2005.
[23] J. Nakauchi, M. Yokoyama, H. Sawa, K. Okamoto, H. Mikawa, and Kusabaya.S, 'IMPURITY EFFECT ON DOMAIN FORMATION IN A NEMATIC LIQUID-CRYSTAL,' Bulletin of the Chemical Society of Japan, vol. 46, pp. 3321-3324, 1973.
[24] H. Mada, 'Absorption current and impurity ions in nematic liquid crystal cells,' Japanese Journal of Applied Physics, vol. 27, p. L1361, 1988.
[25] H. Mada, 'Ion influence on nematic liquid crystal cell impedance at low frequency,' Japanese Journal of Applied Physics, vol. 34, p. 1134, 1995.
[26] E. F. Carr and L. S. Chou, 'Molecular alignment and conductivity anisotropy in a nematic liquid crystal,' Journal of Applied Physics, vol. 44, pp. 3365-3366, 1973.
[27] R. E. Michel and G. W. Smith, 'Dependence of birefringence threshold voltage on dielectric anisotropy in a nematic liquid crystal,' Journal of Applied Physics, vol. 45, pp. 3234-3236, 1974.
[28] R. Williams, 'Domains in Liquid Crystals,' The Journal of Chemical Physics, vol. 39, pp. 384-388, 1963.
[29] C. C. Cheng, 'Variable focus dielectric liquid droplet lens,' Optics Express, vol. 14, p. 4101, 2006.
[30] S. C. Gebhart and A. Mahadevan-Jansen, 'Brain tumor demarcation with liquid-crystal tunable filter spectral imaging,' in Advanced Biomedical and Clinical Diagnostic Systems IV, San Jose, CA, USA, 2006, pp. 60800I-12.
[31] J. W. McMurdy Iii, G. D. Jay, S. Suner, and G. P. Crawford, 'Anemia detection utilizing diffuse reflectance spectra from the palpebral conjunctiva and tunable liquid crystal filter technology,' in Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems V, San Diego, CA, USA, 2006, pp. 61771C-10.
[32] Y. Yu, 'Soft actuators based on liquid-crystalline elastomers,' Angewandte Chemie(International ed.), vol. 45, p. 5416, 2006.
[33] V. M. Shalaev, 'Optical negative-index metamaterials,' Nature Photonics, vol. 1, p. 41, 2007.
[34] D. H. Werner, 'Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,' Optics Express, vol. 15, p. 3342, 2007.
[35] B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, 'Liquid-crystal electric tuning of a photonic crystal laser,' Applied Physics Letters, vol. 85, pp. 360-362, 2004.
[36] J. A. Yeh, C. A. Chang, C. C. Cheng, J. Y. Huang, and S. S. H. Hsu, 'Microwave characteristics of liquid-crystal tunable capacitors,' Ieee Electron Device Letters, vol. 26, pp. 451-453, Jul 2005.
[37] C. M. A. Chang, C. C. Cheng, and J. A. Yeh, 'Analysis and modeling of liquid-crystal tunable capacitors,' Ieee Transactions on Electron Devices, vol. 53, pp. 1675-1682, Jul 2006.
[38] S. J. Woltman, G. D. Jay, and G. P. Crawford, 'Liquid-crystal materials find a new order in biomedical applications,' Nat Mater, vol. 6, pp. 929-938, 2007.
[39] G. Backus, Continuum Mechanics: Samizdat Press, 1997.
[40] F. C. Frank, 'I. Liquid crystals. On the theory of liquid crystals,' Discussions of the Faraday Society, vol. 25, p. 19, 1958.
[41] M. J. Stephen, 'Physics of liquid crystals,' Reviews of Modern Physics, vol. 46, p. 617, 1974.
[42] B. Van Brunt, The calculus of variations. New York :: Springer, 2004.
[43] H. J. Deuling, 'Deformation of nematic liquid crystals in an electric field,' Molecular Crystals and Liquid Crystals Science and Technology - Section A: Molecular Crystals and Liquid Crystals, vol. 19, p. 123, 1972.
[44] K. Y. Lo, C. C. Shiah, and C. Y. Huang, 'Actual capacitance function of nematic liquid crystal cell,' Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 891-895, Feb 2006.
[45] C. M. Bender, Advanced mathematical methods for scientists and engineers. New York :: Springer, 1999.
[46] A. D. Yalcinkaya, 'Ph.D Thesis,' 2003.
[47] A. D. Yalcinkaya, S. Jensen, and O. Hansen, 'Low voltage, high-Q SOI MEMS varactors for RF applications,' in Solid-State Circuits Conference, 2003. ESSCIRC '03. Proceedings of the 29th European, 2003, pp. 607-610.
[48] D. M. Klymyshyn, D. T. Haluzan, M. Borner, S. Achenbach, J. Mohr, and T. Mappes, 'High aspect ratio vertical cantilever RF-MEMS variable capacitor,' Ieee Microwave and Wireless Components Letters, vol. 17, pp. 127-129, Feb 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45320-
dc.description.abstract在本論文中,使用漸進展開法以及微擾理論簡化得到液晶材料受到外加電壓影響的公式解。在此公式中,包含有液晶材料的各項材料參數,有別於數值解,可適用於不同的液晶材料,並可更進一步地探討液晶材料在不同幾何環境下的行為反應。
本論文包含了兩種實驗結構設計,分別為固定距離的電容(晶胞)以及可變距離的電容(微機電式平行板可變電容),每種結構分別使用空氣以及液晶作為介電材料。在晶胞的實驗中,其結果可用於驗證本論文推導出之公式,並確認本公式可適用各項材料的可能性假設。將液晶材料充填於微機電式平行板可變電容中,並利用公式對此系統進行預測及實驗驗證。經量測後,可變電容使用空氣作為介電材料時,電容調變量之比例為54.2%,而系統之吸附電壓約為25.5伏特。在充填液晶作為介電材料後,電容調變量比例和吸附電壓都得到了顯著的改變,分別為122.4%以及13伏特。在實驗結果中,使用一般的平行板電容,在不改變幾何尺寸設計的情況下,僅將介電材料更換成液晶材料,電容調變量即可得到明顯的提昇。即使使用固定距離之電容(晶胞),其電容調變量比例仍然可以達到2.5,約略為液晶材料之介電常數異向性比值( ),如符號表內所示。
由於高電容調變量以及低吸附電壓之特性,使得充填液晶材料的可變電容能夠在較小的電壓範圍內獲得較高的電容調變量。此特性能夠應用在微機電式開關(MEMS switches)上,以增加無線通訊中的開關元件之性能,對於無線通訊微波開關的電性品質會有很高的提升。
zh_TW
dc.description.abstractIn this thesis, the effective dielectric constant of liquid crystal materials controlled by the applied voltage is derived and verified by experiments. The effective dielectric constant is derived by asymptotic expansion and perturbation method, and the parameters of materials are contained in the function. The asymptotic solution thus can be used to describe different types of liquid crystal materials controlled by applied voltage.
Furthermore, two types of experiments are taken, which are fixed-gap capacitor (LC cells), and MEMS tunable capacitor (parallel plates). Both types of capacitors are filled with air and liquid crystal materials as the dielectric materials. The asymptotic solution derived in this thesis is verified by the experiment of LC cells, and then the liquid crystal material is filled into the MEMS tunable capacitor to discuss the behavior controlled by applied voltage.
The devices are measured by Agilent E4980A Precision LCR meter, and the results shows that the tuning ratio and the pull-in voltage can both be significantly improved. For the tunable capacitor filled with air, the tuning ratio and pull-in voltage are about 54.2% and 25.5V. Once the device is filled with the liquid crystal materials, the values are improved to 122.4% and 13V. The results shows that for the tunable capacitors with same geometric designs, the tuning ratio and pull-in voltage can be significantly improved by changing the dielectric materials from air to liquid crystal materials. Even for the fixed gap capacitor filled with liquid crystal materials, the tuning ratio can still reached 2.5 to 2.6, which is similar to the dielectric anisotropy factor defined in the nomenclature.
High tuning ratio and low pull-in voltage MEMS tunable capacitors are designed and demonstrated in this thesis. Because of these characteristics, the devices can further be used as MEMS switches in wireless communication. With the significant improvements, the MEMS switches can be operated within small actuation voltage and large capacitance tuning ratio.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:14:06Z (GMT). No. of bitstreams: 1
ntu-99-R96543026-1.pdf: 5391312 bytes, checksum: cfa51424b11dd298baf9ff5efce3d45f (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
誌謝 i
中文摘要 ii
Abstract iv
Contents vi
Figures ix
Tables xii
Nomenclature xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 2
1.2.1 Capacitance tuning ratio of MEMS Tunable Capacitors 2
1.2.2 Liquid Crystal (LC) Materials 4
1.3 Thesis Structure 7
Chapter 2 Parallel-Plates Capacitors Filled with Nematic Liquid Crystal Materials 8
2.1 Model of Parallel-Plate Capacitors with Fixed Gap 8
2.2 Theories of Capacitance-Voltage Relations 10
2.2.1 Distribution of Tilting Angle 10
Gauss’s Law (Gauss’s Theorem) 11
Continuum Elastic Theory 13
Free Energy per Unit Area 16
Variation Method 18
2.2.2 C-V Function when Gap is Fixed 21
Chapter 3 Analytical Solutions by Asymptotic Methods and Perturbation Method 24
3.1 Integration Expansion 25
3.2 Simplification of Functions 30
3.2.1 Voltage V.S. Maximum Tilting Angle 30
3.2.2 Capacitance V.S. Maximum Tilting Angle 34
3.3 Analytical C-V Function of “Fixed-Gap”, Parallel-Plates Capacitors 37
3.3.1 Effective Dielectric Constant Function of Applied Voltage 39
3.3.2 Capacitance Tuning Ratio 43
3.4 C-V Curve of “Changeable-Gap”, Parallel-Plates Capacitors 44
3.4.1 Tuning Ratio, and Pull-in Voltage 50
Chapter 4 Experiments and Designs 53
4.1 Equipments and Materials 53
4.2 Structure Design 54
4.2.1 Fixed-Gap Capacitor 54
4.2.2 Changeable-Gap Capatcitor 55
4.2.3 Filling Liquid Crystal Materials 59
4.3 Measuring system 59
Chapter 5 Experiment Results & Discussion 62
5.1 Device of Fixed-Gap Tunable Capacitors 62
5.1.1 Filled with Air 63
5.1.2 Filled with Liquid Crystal 64
5.2 Changeable-Gap Tunable Capacitors 67
5.2.1 Filled with Air 69
5.2.2 Filled with Liquid Crystal 71
5.2.3 Pull-in and Pull-out Hysteresis 73
Chapter 6 Conclusion and Future Work 76
6.1 Conclusion 76
6.2 Future Work 77
Reference 79
Appendix A Integration Expansion Process 83
dc.language.isozh-TW
dc.subject吸附電壓zh_TW
dc.subject漸進展開法zh_TW
dc.subject微擾理論zh_TW
dc.subject微機電式可變電容zh_TW
dc.subject液晶材料zh_TW
dc.subject電容調變量zh_TW
dc.subjectperturbation methoden
dc.subjectAsymptotic expansionen
dc.subjectpull-in voltageen
dc.subjectcapacitance tuning ratioen
dc.subjectLiquid crystal materialsen
dc.subjectMEMS tunable capacitoren
dc.title向列式液晶材料充填於微機電式可變電容之高電容調變量及低吸附電壓特性zh_TW
dc.titleHigh Capacitance Tuning Ratio and Low Pull-in Voltage MEMS Tunable Capacitors Filled with Nematic Liquid Crystal Materialsen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.advisor-orcid,施文彬(wpshih@ntu.edu.tw)
dc.contributor.oralexamcommittee胡毓忠(Yuh-Chung Hu),李其源(Chi-Yuan Lee)
dc.subject.keyword漸進展開法,微擾理論,微機電式可變電容,液晶材料,電容調變量,吸附電壓,zh_TW
dc.subject.keywordAsymptotic expansion,perturbation method,MEMS tunable capacitor,Liquid crystal materials,capacitance tuning ratio,pull-in voltage,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2010-01-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
5.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved