請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45319完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯淳涵 | |
| dc.contributor.author | Chia-Chieh Chen | en |
| dc.contributor.author | 陳嘉介 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:14:03Z | - |
| dc.date.available | 2016-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-17 | |
| dc.identifier.citation | [1] N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresource Technology, 96 (2005) 673-686.
[2] J.D. Wright, C.E. Wyman, K. Grohmann, Simultaneous saccharification and fermentation of lignocellulose, Applied Biochemistry and Biotechnology, 18 (1988) 75-90. [3] D. Fengel, G. Wegener, Wood: Chemistry, Ultrastructure, Reactions, European Journal of Wood and Wood Product, 42(8)(1984). [4] B.C. Saha, Hemicellulose bioconversion, Journal of Industrial Microbiology and Biotechnology, 30 (2003) 279-291. [5] L. Laureano-Perez, F. Teymouri, H. Alizadeh, B.E. Dale, Understanding factors that limit enzymatic hydrolysis of biomass, in, Springer, 2005, pp. 1081-1099. [6] J.D. McMillan, Pretreatment of lignocellulosic biomass, in, ACS Publications, 1994, pp. 292-324. [7] P. Kumar, D.M. Barrett, M.J. Delwiche, P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Industrial & Engineering Chemistry Research, 48 (2009) 3713-3729. [8] M.J. Taherzadeh, K. Karimi, Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review, International journal of molecular sciences, 9 (2008) 1621-1651. [9] W. Faith, Development of the Scholler process in the United States, Industrial & Engineering Chemistry, 37 (1945) 9-11. [10] Q. Xiang, Y.Y. Lee, R.W. Torget, Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass, Applied biochemistry and biotechnology, 115 (2004) 1127-1138. [11] M.J. Taherzadeh, R. Eklund, L. Gustafsson, C. Niklasson, G. Liden, Characterization and fermentation of dilute-acid hydrolyzates from wood, Industrial & Engineering Chemistry Research, 36 (1997) 4659-4665. [12] M.J. Taherzadeh, K. Karimi, Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review, (2007). [13] B.C. Saha, L.B. Iten, M.A. Cotta, Y.V. Wu, Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol, Biotechnology progress, 21 (2005) 816-822. [14] A. Hendriks, G. Zeeman, Pretreatments to enhance the digestibility of lignocellulosic biomass, Bioresource technology, 100 (2009) 10-18. [15] Y. Yamashita, C. Sasaki, Y. Nakamura, Effective enzyme saccharification and ethanol production from Japanese cedar using various pretreatment methods, Journal of bioscience and bioengineering, 110 (2010) 79-86. [16] C. Cara, E. Ruiz, M. Ballesteros, P. Manzanares, M.J. Negro, E. Castro, Production of fuel ethanol from steam-explosion pretreated olive tree pruning, Fuel, 87 (2008) 692-700. [17] J. Zhu, G. Wang, X. Pan, R. Gleisner, Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification, Chemical Engineering Science, 64 (2009) 474-485. [18] M. Galbe, G. Zacchi, Pretreatment of lignocellulosic materials for efficient bioethanol production, Biofuels, (2007) 41-65. [19] Gollapalli, L. E., Dale, B. E. and Rivers, D. M. (2002) Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw. Appl. Biochem. Biotechnol.,98, 23–35. [20] S.P.S. Chundawat, B. Venkatesh, B.E. Dale, Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility, Biotechnology and bioengineering, 96 (2007) 219-231. [21] T. Heinze, K. Schwikal, S. Barthel, Ionic liquids as reaction medium in cellulose functionalization, Macromolecular bioscience, 5 (2005) 520-525. [22] J.S. Moulthrop, R.P. Swatloski, G. Moyna, R.D. Rogers, High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions, Chemical Communications, (2005) 1557-1559. [23] A.P. Dadi, S. Varanasi, C.A. Schall, Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step, Biotechnology and bioengineering, 95 (2006) 904-910. [24] M. Ballesteros, J. Oliva, M. Negro, P. Manzanares, I. Ballesteros, Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875, Process Biochemistry, 39 (2004) 1843-1848. [25] P. Sassner, M. Galbe, G. Zacchi, Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content, Enzyme and microbial technology, 39 (2006) 756-762. [26] P. Sassner, C.G. Martensson, M. Galbe, G. Zacchi, Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol, Bioresource technology, 99 (2008) 137-145. [27] Z. Husain, Z. Zainac, Z. Abdullah, Briquetting of palm fibre and shell from the processing of palm nuts to palm oil, Biomass and Bioenergy, 22 (2002) 505-509. [28] N. Dowe, J. McMillan, SSF experimental protocols: lignocellulosic biomass hydrolysis and fermentation, LAP-008. Golden, CO.: NREL, (2001). [29] M. Roncero, J. Colom, T. Vidal, Cellulose protection during ozone treatments of oxygen delignified Eucalyptus kraft pulp, Carbohydrate polymers, 51 (2003) 243-254. [30] S. Mani, L.G. Tabil, S. Sokhansanj, Specific energy requirement for compacting corn stover, Bioresource technology, 97 (2006) 1420-1426. [31] A. Demirbas, Calculation of higher heating values of biomass fuels, Fuel, 76 (1997) 431-434. [32] L. Lin, E. van der Voet, H. Gjalt, An energy analysis of ethanol from cellulosic feedstock–Corn stover, Renewable and Sustainable Energy Reviews, 13(2009)2003-2011. [33] K.C. Lin, C.T. Duh, C.M. Huang, Estimate of Carbon Storage of Acacia confusa and Liquidamber formosana plantations in Taitung Area. Quarterly Journal of Forest Research, 31(3)(2009) 55-68. [34] F. L. Feng, The Growth and Stand Structure of Natural and Man-Made Forests in the Tropical Forest Region of Taiwan. Bull. Exp. Forest of NCHU, 11(1989) p21-40. [35] Y.J. Lin, C.P. Liu, J.C. Lin, Measurement of Specific Gravity and Carbon Content of Important Timber Species in Taiwan, Taiwan Journal of Forest Science. 17(3)(2002) 291-299. [36] C.F. Chen, F.W. Horng, T.Y. Chang, Study on the Growth of Three Eucalyptus Species in Eastern Taiwan, Taiwan Journal of Forest Science, 11(3)(1996) 233-238. [37] W.H. Kan, T.W. Hu, J.C. Yang, Preliminary result on the adaptability of five Eucalypt species planted in eastern Taiwan, Bulletin of Taiwan Forestry Research Institute, 5(2)(1990)99-109. [38] T. Ona, T. Sonoda, K. Ito, M. Shibata, Relationship between various extracted basic densities and wood chemical components in Eucalyptus camaldulensis, Wood Science and Technology, 31 (1997) 205-216. [39] R. Katzen, D.E. Fowler, Ethanol from lignocellulosic wastes with utilization of recombinant bacteria, Applied biochemistry and biotechnology, 45 (1994) 697-707. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45319 | - |
| dc.description.abstract | 本研究使用台灣相思樹與藍桉木片進行蒸氣爆碎前處理,後續的酵素水解與發酵實驗。前處理方法為將木片浸泡在1.5%硫酸96小時,再通入190oC蒸氣,持溫10分鐘進行爆碎。再將蒸氣爆碎漿進行96小時酵素水解試驗,材料濃度為2.5克/100毫升,酵素包括cellulase、β-glucosidase以及xylanase等配方組合,添加量比例:2與6毫升酵素/100克絕乾漿,溫度為50oC,pH 5.0。酵素添加量為6毫升酵素/100克絕乾重的蒸氣爆碎漿中,葡萄糖的最大得率為藍桉蒸氣爆碎漿的986.3毫克/每克纖維素,相思樹蒸氣爆碎漿為831.0毫克/每克纖維素。蒸汽爆碎漿中,木醣與木質素的含量與葡萄糖的水解效率成反比。
發酵試驗中,材料以濃度為3克纖維素/100毫升,加入上述酵素,並加入酵母菌Saccharomyces cerevisiae D5A進行同時糖化與發酵試驗,溫度條件為37oC,pH值 4.8,發酵170小時,再利用HPLC分析酒精得率。酒精產量中,相思樹蒸氣爆碎漿轉化率為70.72 克酒精/每公斤絕乾木片,藍桉蒸汽爆碎漿轉化率為測得65.21克酒精/每公斤絕乾木片。 能源分析方面,以相思樹生產一公升酒精需要11.24公斤絕乾木片,並消耗能量80.20百萬焦耳,經過發酵後剩餘的殘渣絕乾重為3.32公斤,以殘渣熱值為每公斤22.88百萬焦耳而言,殘渣部分可產出87.17百萬焦耳。而利用藍桉生產一公升酒精需要12.20公斤絕乾木片,並消耗86.24百萬焦耳。經過發酵後剩餘的殘渣為2.61公斤絕乾重,其熱值為每公斤22.31百萬焦耳,殘渣部分可產出67.38百萬焦耳。根據上述能源分析結果,相思樹為發酵纖維酒精較佳原料。 | zh_TW |
| dc.description.abstract | Steam explosions were conducted to pretreat acacia and eucalypt chips, then further saccharification and fermentation were also conducted. Acidic steam explosion (1.5 % w/v H2SO4) was employed at 190oC for 10 min. For the saccharification of exploded pulps, enzyme formulations with cellulase, β-glucosidase and xylanase activities were applied with two dosages: 2 and 6 percents weights to dried pulps at 50oC, pH 5.0. Optimal hydrolyzed glucose yields were 986.3 mg and 831 mg per gram of pulp alpha cellulose for acidic exploded eucalypt and acacia pulps. It’s also found that the hydrolysis efficiencies were negatively impacted by lignin and xylan contents of pulps.
Simultaneous saccharification and fermentation (SSF) were also conducted using Saccharomyces cerevisiae D5A under 37oC and pH 4.8 at shake flask level with 1 % (w/v) yeast extract and 2 % (w/v) peptone. After 170 hours, 70.72 and 65.21 gram of ethanol were produced from acidic exploded acacia and eucalypt chips. The above yields are based on per kilogram of oven dried wood chip. After all the analysis, it was found that 11.24 kg dried acacia wood chip and 80.2 MJ were required to produce 1L ethanol and 3.32 kg dried residue. The dried acacia residue could generate the energy 87.17 MJ, with unit heating value of 22.88 MJ/kg. And it was found that 12.20 kg dried eucalypt wood chip and 86.24 MJ were required to produce 1L ethanol and 2.61 kg dried residue. The dried eucalypt residue could generate the energy 67.38 MJ, with unit heating value of 22.31 MJ/kg. Based on the above energy analysis, acacia was the superior raw material for the fermentation of cellulosic ethanol. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:14:03Z (GMT). No. of bitstreams: 1 ntu-100-R98625047-1.pdf: 1080288 bytes, checksum: beebdc39f18ffa0726d804f223604971 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES viii Chapter 1 Introduction 1 Chapter 2 Literature reviews 3 2.1 The composition of lignocellulosic material 3 2.2 Pretreatment 4 2.2.1 Goal of pretreatment 4 2.2.2 Acid hydrolysis pretreatment 6 2.2.3 Steam explosion 8 2.2.4 Milling 10 2.2.5 Ammonia Fiber Explosion (AFEX) 13 2.2.6 Organosolv process 14 2.2.7 Ionic Liquid Pretreatment 15 2.3 Simultaneous saccharification and fermentation (SSF) 19 2.4 Biomass residues for briquetting 21 Chapter 3 Objectives 22 Chapter 4 Materials and methods 23 4.1 Materials 23 4.1.1 Steam explosions 23 4.1.2 Kraft pulping and bleaching 23 4.1.3 Enzyme hydrolysis 24 4.1.4 Simultaneous saccharification and fermentation (SSF) 24 4.1.5 Analytical methods 25 Chapter 5 Results and discussions 26 5.1 Raw materials, steam explosion pretreatment and kraft pulps chemical composition 26 5.2 Enzyme hydrolysis 26 5.3 Effect of xylan and lignin contents on enzyme hydrolysis 29 5.4 Simultaneous sccharification and fermentation 31 5.5 Energy analysis 35 5.5.1 Energy balance in steam exploded pulps for ethanol production 35 5.5.2 Energy balance in unbleached pulps for ethanol production 39 5.6 Estimated of ethanol yields from hardwood in Taiwan 41 Chapter 6 Conclusion 43 Reference 44 | |
| dc.language.iso | en | |
| dc.subject | 相思樹 | zh_TW |
| dc.subject | 能源分析 | zh_TW |
| dc.subject | 前處理 | zh_TW |
| dc.subject | 蒸汽爆碎 | zh_TW |
| dc.subject | 纖維酒精 | zh_TW |
| dc.subject | 藍桉 | zh_TW |
| dc.subject | 同時糖化與發酵 | zh_TW |
| dc.subject | Eucalyptus globulus | en |
| dc.subject | Energy analysis | en |
| dc.subject | Pretreatment | en |
| dc.subject | Steam explosion | en |
| dc.subject | Acacia confusa | en |
| dc.subject | cellulosic ethanol | en |
| dc.subject | Simultaneous saccharification and fermentation (SSF) | en |
| dc.title | 以相思樹與藍桉生產纖維酒精之效率與能源分析 | zh_TW |
| dc.title | Efficiencies and Energy Analysis of Cellulosic Ethanol Production from Acacia confusa and Eucalyptus globulus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王亞男,藍浩繁,林曉洪,陳世銘 | |
| dc.subject.keyword | 相思樹,藍桉,纖維酒精,前處理,蒸汽爆碎,同時糖化與發酵,能源分析, | zh_TW |
| dc.subject.keyword | Acacia confusa,cellulosic ethanol,Eucalyptus globulus,Simultaneous saccharification and fermentation (SSF),Steam explosion,Pretreatment,Energy analysis, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
