Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45314
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林裕彬(Yu-Pin Lin)
dc.contributor.authorCheng-Long Wangen
dc.contributor.author王承龍zh_TW
dc.date.accessioned2021-06-15T04:13:48Z-
dc.date.available2010-02-04
dc.date.copyright2010-02-04
dc.date.issued2010
dc.date.submitted2010-01-19
dc.identifier.citation1. Abe, S., Iguchi, K., Ito, S., Uchida, Y., Ohnishi, H. & Ohmori, K. (2003) Habitat use of the grazing goby (Sicyopterus japonicus) in response to spatial heterogeneity in riparian shade. Journal of Freshwater Ecology, 18, 161-167.
2. Abe, S., Yodo, T., Matsubara, N. & Iguchi, K. (2007) Distribution of two sympatric amphidromous grazing fish Plecoglossus alivelis Temminck & Schlegel and Sicypoterus japonicus (Tanka) along the course of a temperate river. Hydrobiologia, 575, 415-422.
3. Akihito, S.K., Ikeda, Y. & Iwata, A. (2000) Gobioidei. In: Nakabo T (ed) Fishes of Japan with pictorial keys to the species. 2nd edn. Tokai University Press, Tokyo.
4. Allan, J.D. (1983) Predator_prey relationships in streams. In: Barnes, J. R. and Minshall, G. W. (eds), Stream ecology: application and testing of general ecological theory. Plenum Press, pp. 191-229.
5. Angermeier, P.L. & Karr, J.R. (1983) Fish communities along environmental gradients in a system of tropical streams. Environmental Biology of Fishes, 9, 117-135.
6. Angermeier, P.L. & Schlosser, I.J. (1989) Species-area relationships for stream fishes. Ecology, 70, 1450-1642.
7. Azzellin, A. & Vismara, R. (2001) Pool Quality Index: New Method to Define Minimum Flow Requirements of High-Gradient, Low-Order Streams. Journal of Environmental Engineering, 127, 1003-1013.
8. Barmuta, L.A., (1990) Interaction between the effects of substratum, velocity and location on stream Benthos: an experiment. Australian Journal of Marine and Freshwater Research, 41, 557-573.
9. Baxter, C.V. & Hauer, F.R. (2000) Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and Aquatic Sciences, 57, 1470-1481. doi:10.1139/cjfas-57-7-1470
10. Billard, R. & Lecointre, G. (2001) Biology and conservation of sturgeon and paddlefish. Reviews in Fish Biology and Fisheries, 10, 355-392. doi:10.1023/A:1012231526151
11. Buhrnheim, C.M. & Cox-Fernandes, C. (2003) Structure of fish assemblages in Amazonian rain-forest streams: effects of habitats and locality. Copeia, 2003(2), 255–262.
12. Chambers, P.A., Prepas, E.E., Hamilton, H.R. & Bothwell, M.L. (1991) Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications, 1, 249-257.
13. Clark,S., Watzin, C. & Cully, H.W. (2008) Spatial distribution and geomorphic condition offish habitat in stream : an analysis using hydraulic modeling and geostatistics. River Research and Application, 24, 885-899.
14. Clifford, N.J. (1993) Differential bed sedimentology and the maintenance of riffle-pool sequences. Catena, 20, 447-468.
15. Cooper, S.D., Walde, S.J. & Peckarsky, B.L. (1990) Prey exchange rates and the impact of predators on prey populations in streams. Ecology, 71, 1503-1514.
16. Creuze des Chatelliers, M. & Reygrobellet, J.L. (1990) Interactions between
geomorphological processes, benthic and hyporheic communities: first results on a by-passes canal of the French upper Rhone river. Regulated Rivers-Research & Management, 5, 139-158.
17. Crook, D.A., Robertson, A.I. & King, A.J. (2001) The influence of spatial scale and habitat arrangement on diel patterns of habitat use by two lowland river fishes. Qecologia, 129, 525-533.
18. Dahl, J. & Greenberg, L. (1996) Effects of habitat structure on habitat use by Gammarus pulex in artificial streams. Freshwater biology, 36(3), 487-495.
19. Dahl, J. (1998) Effects of a benthivorous and a drift-feeding fish on a benthic stream assemblage. Oecologia, 116, 426-432.
20. David, J.P. & Wesley, J.B. (2005) Effectiveness of stream restoration following highway reconstruction projects on two freshwater streams in Kentucky. Ecological Engineering, 25(1), 73-84.
21. Dawson, F.H. & Kern-Hansen, U. (1978) Aquatic weed management in natural streams: the effect of shade by marginal vegetation. Verhandlungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie, 20, 1451-1456.
22. Dettlaff, T.A., Ginsburg, A.S. & Schmalhausen, O.I. (1993) Sturgeon fishes: developmental biology and aquaculture. Berlin, Springer.
23. Dôtu, Y. & Mito, S. (1955) Life history of the gobioid fish, Sicydium japonicum Tanaka. Science Bulletin of the Faculty of Agriculture Kyushu University, 10, 120-126.
24. Durance, I., Celine, L. & Ormercod, S.J. (2006) Recognizing the importance of scale in the ecology and management of riverine fish. River Research and Applications, 22, 1143-1152.
25. Francisco, L., Lilian, C., Helena, S.G., Andre, B.D.C. & Denise, D.C.R. (2005) Riffle and pool fish communities in a large stream of southeastern Brazil. Neotropical Ichthyology, 3(2), 305-311.
26. Fang, L.S. (1993) The fish community of a high mountain stream in Taiean and its relation to dam design. Environmental Biology of Fishes, 38, 321-330
27. Feng, Y., Tang, S. & Li, Z. (2006). Application of improved sequential indicator simulation to spatial distribution of forest types. Ecology and Management, 222, 391-398.
28. Frissell, C.A., Liss, W.J., Warren, C.E. & Hurley, M.D. (1986) A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management, 10(2), 199-214.
29. FISRWG (10/1998). Stream Corridor Restoration: Principles, Processes, and
Practices. By the Federal Interagency Stream Restoration Working Group
(FISRWG) (15 Federal agencies of the US gov't). GPO Item No. 0120-A; SuDocs No. A 57.6/2: EN 3/PT.653. ISBN-0-934213-59-3.
30. Ganio, L.M., Torgersen, C.E. & Gresswell, R.E. (2005) A geostatistical approach for describing spatial pattern in stream networks. Frontiers in Ecology and the Environment, 3(3), 138-144.
31. Gelwick, F.P. (1990) Longitudinal and temporal comparisons of riffle and pool fish assemblages in a Northeastern Oklahoma Ozark stream. Copeia, 1990, 1072-1082
32. Gresswell, R.E., Torgersen, C.E. & Bateman, D.S. (2006) A spatially explicit approach for evaluating relationships among coastal cutthroat trout, habitat, and disturbance in small Oregon streams. Landscape Influences on Stream Habitats and Biological Assemblages, 48, 457-471.
33. Gorman, O.T. & Karr, J.R. (1978) Habitat structure and stream fish communities. Ecology, 59, 507-515.
34. Goovaerts, P. (1997) Geostatistics for natural resources evaluation, Oxford University Press: New York, pp. 259-368.
35. Griochpe, A., Koubbai, N.D. & Sautour, B. (1997) Ontogenic migration of Pleuronectes Jesus larvae in the eastern English Channel. Journal of Fish Biology, 51, 385-396
36. Hubert, W. A. & Rahel, F.J. (1989) Relations of physical habitat to abundance of four nongame fishes in high-plains streams: a test of habitat suitability index models. North American Journal of Fisheries Management, 9, 332-340.
37. Iida, M., Watanabe, S., Shinoda, A. & Tsukamoto, K. (2008) Recruitment of amphidromous goby Sicypoterus japonicus to the estuary of the Ota River, Wakayama, Japan. Environmental Biology of Fish, 83, 331-341.
38. Inoue, M. & Miyayoshi, M. (2006) Fish foraging effects on benthic assemblages along a warm-temperate stream: differences among drift feeders, benthic predators and grazers. Oikos, 114, 95-107.
39. Inoue, M. & Nakano, S. (1998). Effects of woody debris on the habitat of juvenile masou salmon (Oncorhynchus masou) in northern Japanese streams. Freshwater Biology, 40, 1-16.
40. Inoue, M. & Nunokawa, M. (2002) Effects of longitudinal variations in stream habitat structure on fish abundance: an analysis based on subunit-scale habitat classification. Freshwater Biology, 47, 1594-1607.
41. Isaac, J.S. (1982) Fish community structure and function along two habitat gradients in a headwater stream. Ecological Monographs, 52(4), 395-414.
42. Jang, C.S., Liu, C.W., Lin, K.H., Huang, F.M. & Wang, SW. (2006) Spatial analysis of potential carcinogenic risks associated with ingesting arsenic in aquacultural tilapia (Oreochromis mossambicus) in blackfoot disease hyperendemic areas. Environmental Science and Technology, 40(5), 1707-1713.
43. Joanna, L.K., David, M.H. & Giuseppe, A.C. (2000) The habitat-scale ecohydraulics of rivers. Ecological Engineering, 16, 17-29.
44. Jowett, I.G. (1993) A method for identifying pool, run, and riffle habitats from physical measurements. New Zealand Journal of Marine and Freshwater Research, 27, 241-248.
45. Journal, A.G. (1988) Nonparametric geostatistics for risk and additional sampling assessment, In L. Keith (ed) Principles of environmental sampling. American Chemical Society, 45-72.
46. Keckeis, H. (2001) Influence of river morphology and current velocity conditions on spawning site selection of Chondrostoma nasus Large Rivers. Arch Hydrobiologie, 12, 341-356.
47. Keller, E.A. & Swanson, F.J. (1979) Effects of large organic material on channel form and fluvial processes. Earth Surface Processes, 4(4), 361-380.
48. Kramer, D.L., Rangeley, R.W. & Chapman, L.J. (1997) Habitat selection: patterns of spatial distribution from behavioural decisions. In: Godin JJ (ed) Behavioural ecology of teleost fishes. Oxford University Press, Oxford, pp 37-80.
49. Layher, W.G., Maughan, O.E. &Warde, W.D. (1987) Spotted bass habitat suitability related to fish occurrence and biomass and measurements of physicochemical variables. North American Journal of Fisheries Management, 7, 238-251.
50. Langeani, F., Casatti, L. & Gameiro, H.S. (2005) Riffle and pool fish communities in a large stream of southeastern Brazil. Neotropical Ichthyology, 3(2), 305-311.
51. Leopold, L.B. (1969) The rapids and the pools-Grand Canyon. United States Geological Survey Professional Paper 669-D, 131-145.
52. Little, L.S., Edwards, D. & Porter, D.E. (1997) Kriging in estuaries: as the crow flies,or as the fish swims. Journal of Experimental Marine Biology and Ecology, 213, 1-11.
53. Lin, Y.P., Tan Y.C. & Rouhani, S. (2001) Identifying Spatial Characteristics of Transmissivity using Simulated Annealing and Kriging Methods, Environmental Geology, 41(1/2), 200-208.
54. Lin, Y.P. (2008) Simulating spatial distributions, variability and uncertainty of soil arsenic by geostatistical simulations in geographic information systems. Open Environmental Sciences, 2, 26-33.
55. Lisle T. E. (1982) Effects of Aggradation and Degradation on Riffle-Pool Morphology in Natural Gravel Channels, Northwestern California. Water Resource. Research, 18(6), 1643-1651.
56. Lobb, M.D. & Orth, D.J. (1991) Habitat use by an assemblage of fish in a large warmwater stream. Transactions of the American Fisheries Society, 120, 65-78.
57. Madsen, T.V. & Søndergaard, M. (1993) The effects of current velocity on the photosynthesis of Callitriche stagnalis scop. Aquatic Botany, 15, 187-193.
58. Madsen, T.V., Enevoldsen, H.O. & Jorgensen, T.B. (1993) Effects of water velocity on photosynthesis and dark respiration in submerged stream macrophytes. Plant Cell Environment, 16, 317-322.
59. Matthews, W.J. (1998) Patterns in freshwater fish ecology. Chapman and Hall, New York, USA, 756p.
60. Magalhães, M.F., Batalha, D.C. & Collares-Pereira, M.J. (2002) Gradients in stream fish assemblages across a Mediterranean landscape: contributions of environmental factors and spatial structure. Freshwater Biology, 47(5), 1015-1031.
61. McDowall, R.M. (1988) Diadromy in Fishes. Migrations between Freshwater and Marine Environments. Croom Helm, London.
62. Miline, J.A. (1982) Bed-material size and the riffle-pool sequences. Sedimentology, 29, 267-278.
63. Moir, H.J., Gibbins, C.N., Soulsby, C. & Webb, J.H. (2006) Discharge and hydraulic interactions in contrasting channel morphologies and their influence on site utilization by spawning Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 63, 2567-2585. doi:10.1139/F06-137.
64. Moise, C.P. & Michel, L. (2004) Geomorphic controls, riffle substrate quality, and spawning site selection in two semi-alluvial salmon rivers in the Gaspé Peninsul, Canada. River Research and Applications, 20, 577-590. doi:10.1002/rra.768.
65. Moore, K., Furniss, M., Firor, S. & Love, M. (1999) Fish Passage Through Culverts an Annotated Bibliography. USDA Forest Service, Six Rivers National Forest Watershed Interactions Team, Eureka, CA, http://www.stream.fs.fed.us/fishxing/biblio.html.
66. Morita, K. & Yokota, A. (2002) Population viability of stream-resident salmonids after habitat fragmentation: a case study with whitespotted charr (Salvelinus leucomaenis) by an individual based model. Ecological Modeling, 155, 85-94.
67. Nelson, S.G., Parham, J.E., Tibbatts, R.B., Camacho, F.A., Leberer, T. & Smith, B.D. (1997) Distribution and microhabitats of the amphidromous gobies in streams of Micronesia. Micronesica, 30, 83-91.
68. Nielsen, L.A. & Johnson, D.L. (1983) Fisheries Techniques. American Fisheries Society Bethesda, Md.
69. Orth, D.J. & Maughan, O.E. (1983) Microhabitat preferences of benthic fauna in a woodland stream. Hydrobiologia, 106, 157-168.
70. Pajak, P. & Neves, R.J. (1987) Habitat suitability and fish production: a model
evaluation for rock bass in two Virginia streams. Transactions of the American
Fisheries Society, 116, 839-850.
71. Pearson, D.L. (1994) Selecting Indicator Taxa for the Quantitative Assessment of Biodiversity. Philosophical Transactions: Biological Sciences, 345, 75-79.
72. Poff, N.L. & Ward, J.V. (1989) Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences, 46(10), 1805-1818.
73. Robertson, A.I. & Duke, N.C. (1990) Mangrove fish-communities in tropical Queensland Australia: spatial and temporal patterns in densities, biomass, and community structure. Marine Biology, 104, 369-379.
74. Robinson, J.L. & Rand, P.S. (2005) Discontinuity in fish assemblages across an elevation gradient in a southern Appalachian watershed, USA. Ecology of Freshwater Fish, 14, 14-23.
75. Rosenfeld, J. (2000) Effects of fish predation in erosional and depositional habitats in a temperate stream. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1369-1379.
76. Sheaves, M.J. (1996) Habitat specific distributions of some fishes in a tropical estuary. Marine and Freshwater Research, 47, 827-830.
77. Shen, K.N. & Tzeng, W.N. (2002) Formation of a metamorphosis check in otoliths of the amphidromous goby Sicyopterus japonicus. Marine Ecological Progress Series, 228, 205-211.
78. Statzner, B., Gore, J.A. & Resh, V.H. (1988) Hydraulic stream ecology-observed patterns and potential applications. Journal of the North American Benthological Society, 7, 307-360.
79. Swanson, F.J. & Lienkaemper, G.W. (1978) Physical consequences of large organic debris in Pacific Northwest streams. Gen. Tech. Rep. PNW-69, USDA Forest Service.
80. Thorp, J.H. (1986) Two distinct roles for predators in freshwater assemblages. Oikos, 47, 75-82.
81. Thompson, D.M., Wohl, E.E. & Jarrett, R.D. (1996) A revised velocity-reversal and sediment-sorting model for a high-gradient, pool-riffle stream. Physical Geography, 17, 142-156.
82. Torgersen, C.E. & Close, D.A. (2004) Influence of habitat heterogeneity on the
distribution of larval Pacific lamprey (Lampetra tridentata) at two spatial
scales. Freshwater Biology, 49, 614-630.
83. Tzeng, W.N. & Shen, K.N. (2000) Formation of a metamorphosis check in otoliths of the amphidromous goby Sicyopterus japonicus. Marine Ecology Progress Series, 228, 205-211.
84. Vannote, R.L., Wayne, M.G., Cummins, K.W., Sedell, J.R. & Colbert, E.C. (1980) The river countinuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.
85. Vilizzi, L., Copp, G.H. & Roussel, J.M. (2005) Assessing temporal variation and autocorrelation in fish habitat use. Folia Zoology, 54(4), 432-442.
86. Wood, B.M. & Bain, M.B. (1995) Morphology and microhabitat use in stream fish. Canadian Journal of Fisheries and Aquatic Sciences, 52, 1487-1498.
87. Wadeson, R.A. (1994) A geomorphological approach to the identification and classification of instream flow environments. South African Journal of Aquatic Sciences, 20, 38-61.
88. Wooster, D. & Sih, A. (1995) A review of the drift and activity responses of stream prey to predator presence. Oikos, 73, 3-8.
89. Wootton, R.J. (1998) Ecology of teleost fishes. Kluwer Academic Publishers, London,385p.
90. Xu, Z.U., Ito, K., Shultz, G.A. & Li, J.Y. (2001). Integrated hydrologic modeling and GIS in water resources management. J. Comput. Civ. Eng, 15(3), 217-223.
91. Yu, S.L. & Peters, E.J. (1997) Use of froude number to determine habitat selection by fish. Rivers, 6(1), 10-18.
92. 「大屯溪流域環境規劃設計」,2003,(台北市,私立中國文化大學環境設計學院景觀學研究所)。
93. 汪靜明,2000。大甲溪水資源環境教育,經濟部水資源局,30-45。
94. 汪靜明,2002。台北縣大屯溪河川生態調查及溪流生態工法教育宣導計畫成果報告:中華民國生態資訊協會。
95. 汪靜明,2009。石門水庫集水區保育治理工程生態檢核落實方案推動講習會資料集,行政院農業委員會水土保持局。
96. 汪靜明,2009。石門水庫上游集水區快速棲地生態評估法操作網路版手冊,行政院農業委員會水土保持局。
97. 江莉琦,2005。有線混合分佈理論運用於台灣農地重金屬汙染特性之分群,台灣大學生物環境系統工程學系碩士論文。
98. 卓大翔,2007。應用空間統計與水文距離於大屯溪魚類與棲地之時空間變異研究,台灣大學生物環境系統工程學系碩士論文。
99. 林裕彬,2004,快速生物評估方法應用之可行性分析-以大屯溪為例,農工研討會。
100. 林裕彬、張尊國,1999,「條件模擬小樣區土壤鋅重金屬污染」,中國農業工程學報,第四十五卷,第一期,第24頁至第37頁。
101. 林曜松、梁世雄,1997。魚類資源調查技術手冊,行政院農業委員會。
102. 梁文盛,2004,河溪生態工法參考手冊,本土化水域生態工法工程技術之研
究(第三期),[研究報告0940246-1],行政院公共工程委員會委託研究。
103. 梁世雄,2004。淡水水域生物監測之採樣器材介紹及資料分析與應用,高雄師範大學生物科學研究所。
104. 朱達仁,2005。台北縣后番仔坑溪應用生態工法整治之生態評估。台灣水利53(3): 90-101。
105. 吳富春、胡通哲、李國昇、李德旺,1998。應用棲地模式估算台灣河川之生態流量,第九屆水利工程研討會論文集。
106. 郭一羽,2001。水域生態工程。中華大學水域生態環境研究中心。314頁
107. 陳義雄、方力行,1999。台灣淡水及河口魚類誌。
108. 陳志豪,2005。土壤汙染調查之採樣策略研究,台灣大學生物環境系統工程學系碩士論文。
109. 揚津豪,2006。河川生態廊道與魚類物理棲地之水理模式研究,台灣大學土木工程學系碩士論文。
110. 郭鎮維,2007。淺瀨與深潭的河床底質特性研究—以金瓜寮溪中游河段為例。臺灣大學地理環境資源學研究所碩士論文
111. 張耿偉,2002,固床工型態對河川棲地影響之研究,逢甲大學土木及水利工程所碩士論文。
112. 李德旺、于錫亮,2005。埔里中華爬岩鰍棲地環境之需求特有生物研究7(2)︰13-22。
113. 游筱玄,2009。地理資訊系統於河川系統層級分析之研究,國科會大專學生參與專題研究計畫研究成果報告。
114. 王承龍,2008。以空間統計及水文距離概念分析溪流生態水文之一維空間分布,國科會大專學生餐與專題研究計畫研究成果報告。
115. 王保進,1999。英文視窗版SPSS與行為科學研究[第五版]。
116. 賴建盛,1996。防砂壩對櫻花鉤吻鮭物理棲地影響之研究,國立台灣大學地理學系暨研究所碩士論文
117. 公共工程委員會:http://eem.pcc.gov.tw/eem/?q=node/187
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45314-
dc.description.abstract魚類在溪流生態中扮演舉足輕重的角色,其生活週期更與環境因子息息相關,其中以流況影響最為顯著。魚類會針對自身喜好,尋找適宜生長發育、遷徙、產卵、避難之流速/水深組合,因此進行魚類分布與流況分類的討論是有其必要性。本研究引用流速/水深分類法、福祿數法針對大屯溪河段內流況進行分類,然而許多文獻顯示上述兩種方法皆有其優、缺點。為確立何種流況分類法較為適宜大屯溪流域,採用大屯溪日本禿頭鯊為指標物種,探討其對於分類流況(深潭、淺瀨、深流、緩流)的選擇性,並輔以洄游文獻進行驗證。同時,結合克利金法推估河段內魚類出現機率、流速、水深值,量化日本禿頭鯊對於分類流況喜好程度,並利用地理資訊系統展示分類流況、魚類出現機率在空間、時間尺度上之變異。
研究結果顯示,利用克利金推估魚類出現機率、流速、水深,由流速/水深分類法、福祿數法進行流況分類後,其分類流況面積比例在不同調查河段各有差異。其後與魚類出現機率套疊,發現日本禿頭鯊在不同季節喜好不同分類流況,其中洄游季(春季)以出海口的深潭和淺瀨、下游的淺瀨、中上游的深流和淺瀨為主要訴求。此外,兩種流況分類法結果上相異,因此引用日本禿頭鯊洄游文獻驗證,建議流速/水深分類法應用於大屯溪日本禿頭鯊流況需求具有較高的適宜性。然而分類流況乃不同流速/水深組合結果,在溪流生態系統中存有空間不確定性,因此採用逐步指標模擬針對河段內流速、水深值進行各1000次模擬,並計算流速、水深的空間機率;再以流速/水深分類法針對逐步指標模擬結果進行流況分類,同時以地理資訊系統呈現並計算分類流況出現機率60%、80%以上之面積比例,與克利金推估之流況分類結果相互比對,提供大屯溪未來流況分類依據。
zh_TW
dc.description.abstractFish communities play a important role in the freshwater ecosystem, and their life-cycles are obviously related to the environmental factors, especially flow conditions. Fish search for appropriate habitats for growing migrating, spawn, and refuge considering current velocity and depth. Therefore, it is necessary to delineate the correlation between the fish distributions and flow conditions. This main issue is to classify the flow conditions in the Datuan stream by the empirical rule and Froude number. However, various literatures showed that the two methods own the advantages but also drawbacks in the flow classifications. To determine whichever can describe better the flow conditions in the Datuan stream, we consider Sicyopterus japonicus as the indicator species for suiting flow conditions (Pool, Riffle, Run, and slack), and then compare the result to various of migration literatures. Meanwhile, using the Kriging to estimate the probability of occurrence of fish, velocity and depth value, and then qualify the preference of flow conditions of Sicyopterus japonicus. Lastly, display the variations in the flow conditions and the probability of fish in the spatial-temporal scale with geographic information system (GIS).
The result showed that the flow conditions react differently among reaches. Then, the preferences of Sicyopterus japonicus in flow conditions change in the spatial and temporal scale by overlapping the flow conditions map and the contour of fish probability. In particular, the preference of Sicyopteru sjaponicus in the flow conditions is pool and riffle at estuary, riffle in the downstream, run and riffle in the middle and upstream during the migration season (spring). In addition, the outcome are significantly different between the two classifications methods. The empirical rule for flow conditions classification comes out to be more appropriate in the Datuan stream. Nevertheless, owing to the great variation of water depth and current velocity, the consideration of uncertainty is essential. Thus, Sequential indicator simulation (SIS) is applied with 1000 iterations to simulate the overall current velocity and water depth value. Eventually, this research provides the basis of the classifications of flow conditions in the Datuan stream by comparing the result in SIS and Kriging.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:13:48Z (GMT). No. of bitstreams: 1
ntu-99-R96622053-1.pdf: 4470789 bytes, checksum: 4486b1368dc8fb36a85acf3dda8ffcff (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents謝誌....................................................i
中文摘要................................................ii
英文摘要................................................iii
目錄....................................................v
圖目錄..................................................viii
表目錄..................................................x
第一章 緒論.............................................1
1-1 研究源起.....................................1
1-2 研究目的.....................................4
1-3 研究流程圖...................................5
第二章 文獻回顧.........................................8
2-1 河川連續理論.................................8
2-2 日本禿頭鯊行為與分布條件.....................10
2-3 流況分類.....................................12
2-4 地理統計應用於溪流生態系統分析...............17
2-5 逐步指標模擬之應用...........................21
第三章 理論與方法.......................................23
3-1 研究區域.....................................23
3-1-1 大屯溪流域.............................23
3-1-2 生態參考點選擇.........................26
3-1-3 實驗河段...............................27
3-2 魚類與物理棲地參數調查方法...................29
3-2-1 魚類採集方式...........................29
3-2-2 物理棲地參數收集.......................31
3-3 地理統計.....................................31
3-3-1 區域化變數理論特性.....................31
3-3-2 半變異圖分析...........................32
3-3-3 變異圖理論模型.........................34
3-3-4 一般克利金.............................35
3-3-5 指標克利金.............................36
3-3-6 逐步指標模擬...........................38
3-4 河川流況分類準則.............................41
3-4-1 福祿數法...............................41
3-4-2 流速/水深分類法........................42
3-4-3 分類流況與魚類出現機率套疊.............42
3-5 地理資訊系統.................................44
3-6 SPSS軟體概念簡介.............................45
第四章 結果與討論.......................................46
4-1 生物與物理棲地調查...........................46
4-1-1 魚類資源與分布.........................46
4-1-2 調查河段水文資料.......................50
4-2 地理統計分析.................................54
4-2-1 一般克利金推估-流速/水深分布圖.........54
4-2-2 指標克利金推估-魚類出現機率分布圖......63
4-3 流況分類與魚類出現機率圖層套疊...............67
4-3-1 流速/水深分類法分類結果................67
4-3-2 福祿數法分類結果.......................71
4-3-3 專家辨識與流況分類結果比較.............75
4-3-4 分類流況與魚類出現機率直方圖...........79
4-3-5 分類流況在空間尺度之變異...............90
4-3-6 分類流況在時間尺度之變異...............92
4-4 流況分類之不確定因子.........................94
4-5 魚類洄游文獻檢驗分類流況之可行性.............96
4-6 逐步指標模擬分析水文資料.....................99
4-6-1 流速、水深空間機率分布圖...............99
4-6-2 比較克利金、逐步指標模擬之流況分類結果.105
第五章 結論與建議.......................................112
5-1 結論.........................................112
5-2 建議.........................................115
參考文獻................................................116
附錄一 地理統計模型(克利金-流速、水深、魚類出現機率)....125
附錄二 地理統計模型(逐步指標模擬-流速、水深)............127
附錄三 大屯溪魚類圖鑑...................................130
dc.language.isozh-TW
dc.subject克利金法zh_TW
dc.subject地理資訊系統zh_TW
dc.subject分類流況zh_TW
dc.subject逐步指標模擬zh_TW
dc.subject流速/水深分類法zh_TW
dc.subject福祿數法zh_TW
dc.subject大屯溪zh_TW
dc.subject日本禿頭鯊zh_TW
dc.subjectSequential indicator simulationen
dc.subjectFlow conditionen
dc.subjectThe empirical ruleen
dc.subjectFroude number methoden
dc.subjectDatuan streamen
dc.subjectSicyopterus japonicusen
dc.subjectKrigingen
dc.subjectGeographic information systemen
dc.title應用克利金與逐步模擬分析魚類喜好流況之時空變異-以大屯溪日本禿頭鯊為例zh_TW
dc.titleFlow condition preference study using kriging and sequential indicator simulation: The case of Sicyopterus japonicus in Datuan streamen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林鎮洋(Jen-Yang Lin),童慶斌(Ching-Pin Tung),陳彥璋(Yen-Chang Chen)
dc.subject.keyword分類流況,流速/水深分類法,福祿數法,大屯溪,日本禿頭鯊,克利金法,地理資訊系統,逐步指標模擬,zh_TW
dc.subject.keywordFlow condition,The empirical rule,Froude number method,Datuan stream,Sicyopterus japonicus,Kriging,Geographic information system,Sequential indicator simulation,en
dc.relation.page135
dc.rights.note有償授權
dc.date.accepted2010-01-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved