請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45305完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 忻凌偉(Ling-Wei Hsin) | |
| dc.contributor.author | Hui-Xian Liu | en |
| dc.contributor.author | 劉惠賢 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:13:22Z | - |
| dc.date.available | 2010-03-12 | |
| dc.date.copyright | 2010-03-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-01-21 | |
| dc.identifier.citation | 1.Shiue, C. Y.; Welch, M. J. Update on PET radiopharmaceuticals: life beyond fluorodeoxyglucose. Radiologic Clinics of North America. 2004, 42, 1033-1053.
2.Fowler, J. S.; Ding, Y. S.; Volkow, N. D. Radiotracers for Positron Emission Tomography Imaging. Seminars in Nuclear Medicine. 2003, 23, 14-27. 3.Vallabhajosula, S. 18F-Labelled Positron Emission Tomographic Radiopharmaceuticals in Oncology: An Overview of Radiochemistry and Mechanisms of Tumor Location. Seminars in Nuclear Medicine. 2007, 37, 400-419. 4.Wood, K. A.; Hoskin, P. J.; Saunders, M. I. Positron Emission Tomography in Oncology: A Review. Clinical Oncology. 2007, 19, 237-255. 5.Weber, W. A. Positron Emission Tomography As an Imaging Biomarker. Journal of Clinical Oncology. 2008, 24, 3282-3292. 6.Oriuchi, N.; Higuchi, T,; Ishikita, T.; Miyakubo, M.; Hanaoka, H,; Iida, Y.; Endo, K. Present role and future prospects of positron emission tomography in clinical oncology. Cancer Sci. 2006, 97, 1291-1297. 7.Schwaiger, M.; Ziegler, S.; Nekolla, S. G. PET/CT: Challenge for Nuclear Cardiology. Journal of Nuclear Medicine. 2005, 46, 1664-1678. 8.Carli, M. F. D.; Dorbala, S.; Meserver, J,; Fakhri, G. E.; Sitek, A.; Moore, S. C. Clinical Myocardial Perfusion PET/CT. Journal of Nuclear Medicine. 2007, 48, 783-793. 9.deKemp, R. A.; Yoshinaga, K., Beanlands, R. S. B. Will 3-dimensional PET-CT enable the routine quantification of myocardial blood flow? Journal of Nuclear Cardiology. 2007, 17, 380-397. 10.Herholz, K.; Heiss, W. D. Positron Emission Tomography in Clinical Neurology. Molecular Imaging and Biology. 2004, 6, 239-269. 11.Cohen, R. M. The Application of Positron-Emitting Molecular Imaging Tracers in Alzheimer’s Disease. Molecular Imaging and Biology. 2007, 9, 204-216. 12.Nordberg, A. PET imaging of amyloid in Alzheimer’s disease. Lancet Neurology. 2004, 3, 519-527. 13.Aboagye, E. O.; Price, P. M.; Jones, T. In vivo pharmacokinetics and pharmacodynamics in drug development using positron-emission tomography. Drug Discovery Today. 2001, 6, 293-302. 14.Gee, A. D. Neuropharmacology and drug development. British Medical Bulletin. 2003, 65, 169-177. 15.Lever, J. R. PET and SPECT Imaging of the Opioid System: Receptors, Radioligands and Avenues for Drug Discovery and Development. Current Pharmaceutical Design. 2007, 13, 33-49. 16.Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Synthesis of 11C, 18F, 15O, and 13N Radiolabels for Positron Emission Tomography. Angew. Chem. Int. Ed. 2008, 47, 8998 - 9033. 17.Ehrenkaufer, R. E.; Potocki, J. F.; Jewett, D. M. Simple Synthesisof F-18-Labeled 2-Fluoro-2-Deoxy-D-Glucose: Concise Communication Journal of Nuclear Medicine. 1984, 25 333-337. 18.Been, L. B.; Suurmeijer, A. J. H.; Cobben, D.C. P.; Jager, P. L.; Hoekstra, H. J.; Elsinga, P. H. [18F]FLT-PET in oncology: current status and opportunities. European Journal of Nuclear Medicine and Molecular Imaging. 2004, 31, 1659-1672. 19.Grierson. J.; Shields, A. F. Radiosynthesis of 3’-Deoxy-3’-[18F]fluorothymidine: [18F]FLT for Imaging of Cellular Proliferation In Vivo. Nuclear Medicine and Biology. 2000, 27, 143-156. 20.Shields, A. F.; Grierson, J. R.; Dohmen, B. M.; Machulla, H. J.; Stayanoff, J. C.; Lawhorn-Crews, J. M.; Obradovich, J. E.; Muzik, O.; Mangner, T. J. Imaging Proliferation in vivo with [F-18]FLT and Positron Emission Tomography. Nature Medicine. 1998, 4, 1334-1336. 21.Mukherjee, J.; Christian, B. T.; Dunigan, K. A.; Shi, B.; Narayanan, T. K., Satter, M.; Mantil, J. Brain Imaging of 18F-Fallypride in Normal Volunteers: Blood Analysis, Distribution, Test-Retest Studies, and Preliminary Assessment of Sensitivity to Aging Effects on Dopamine D-2/D-3 Receptors. Synapse. 2002, 46, 170-188. 22.Mukherjeet, J.; Yang, Z. Y.; DAS, M. K.; Brown, T. Fluorinated Benzamide Neuroleptics-III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2,3-dimethoxybenzamide as an Improved Dopamine D-2 Receptor Tracer. Nuclear Medicine and Biology. 1995, 22, 283-296. 23.Sun, H.; DiMagno, S. G. Fluoride relay: a new concept for the rapid preparation of anhydrous nucleophilic fluoride salts from KF. Chemical Communicaions. 2007, 528-529. 24.Kim, D. W.; Ahn, D. S.; Oh, Y. H.; Lee, S.; Kil, H. S.; Oh, S. J.; Lee,S. J.; Kim, J. S.; Ryu. J. S.; Moon, D. H.; Chi, D. Y. A New Class of SN2 Reactions Catalyzed by Protic Solvents: Facile Fluorination for Isotopic Labeling of Diagnostic Molecules. Journal of American chemistry society. 2006, 128, 16394-16397. 25.Lee, S. J.; Oh, S.J.; Chi, D.Y.; Kang, S. H.; Kil, H. S.; Kim, J. S.; Moon, D. H. One-step high-radiochemical-yield synthesis of [18F]FP-CIT using a protic solvent system. Nuclear Medicine and Biology. 2007, 34 345-351. 26.Kim, D. W.; Jeong, H. J.; Lim, S. T.; Sohn, M. H.; Katzenellenbogen, J. A.; Chi, D. Y. Facile Nucleophilic Fluorination Reactions Using tert-Alcohols as a Reaction Medium: Significantly Enhanced Reactivity of Alkali Metal Fluorides and Improved Selectivity. J. Org. Chem. 2008, 73, 957-962. 27.Takahashi, T.; Ido, T.; Ashino, H.; Ootake, A.; Iwata, R.; Yanai, K. [18F]Labelled 1, 2-Diacylglycerols: A New Tracer for the Imagine of Second Messenger System. Journal of Labeled Compound Radiopharmaceuticals. 1994, 35, 517-519. 28.Chen, W. R. Design and synthesis of amido- and carbamoyl-anthraquinones as potential antitumor agents. 國立台灣大學醫學院藥學研究所碩士班論文, July, 2005. 29.Wang, C. W. Design and synthesis of S-fluoroalkylcysteine-anthraquinones as potential tumor imaging agents for positron emission tomography. 國立台灣大學醫學院藥學研究所碩士班論文, January, 2008. 30.Kao, P. H. Design and synthesis of potential tumor imaging agents for positron emission tomography. 國立台灣大學醫學院藥學研究所碩士班論文, July, 2007. 31.Aspinall, S. R. Ethylenediamine. Ⅳ. Monoalkyl Derivatives. Journal of American Chemical Society. 1941, 63, 852-854. 32.Dugenet, P.; Yaouanc, J. J.; Sturtz, G. A Selective and Efficient Synthesis of Quisqualamine, a Novel GABA-Related Depressant Amino Acid. Synthesis. 1982, 9, 781-782. 33.Barker, P. L.; Gendler, P. L.; Rapoport, H. R. Acylation of Dibasic Compounds Containing Amino Amidine and Aminoguanidine Functions. J. Org. Chem. 1981, 46, 2455-2465. 34. Erhardt, P. W.; Woo, C. M.; Matier, W. L.; Gorczynski, R. J.; Anderson, W. G. Ultra-Short-Actingβ-Adrenergic Receptor Blocking Agents. Ethylenediaming Derivatives of (Aryloxy) propanolamines Having Esters onf the Aryl Function. J. Med. Chem. 1983, 26, 1109-1112. 35. Maltese, M. Reductive Demercuration in Deprotection of Trityl Thioethers, Trityl Amines, and Trityl Ethers. J. Org. Chem. 2001, 66, 7615-7625. 36. Jones, G. B.; Hynd, G.; Wright, J. M.; Sharma, A. On the Selective Deprotection of Trityl Ethers. J. Org. Chem. 2000, 65, 263-265. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45305 | - |
| dc.description.abstract | 根據本實驗室先前對一系列氟化胺基蒽醌類化合物的藥理活性篩選結果,選定研究合成氟-十八標記之化合物48以應用於正子斷層掃描;合成原則是將導入氟-十八的反應盡量安排至整個合成路徑的末端,並且最佳化整體反應所需要的時間,使氟-十八之放射損失減至最小,理論上可將氟-十八經由直接親核取代導入前驅物2,或間接的利用氟-十八取代之輔基的方式分別導入前驅物1來得到氟-十八標記之目標化合物48;本論文成功合成可應用之前驅物1 (49)及2 (39),氟化標準品38及48;首先,將買來之N-(3-羥丙基)乙二胺側鏈末端之羥基利用TBDMS保護基保護,進行氧化縮合反應接至Leucoquinizarin上,接著胺基(R1和R3)用三苯基甲基保護基保護,再利用氟化鉀和Kryptofix 222將羥基上之TBDMS保護基移去,進行甲磺醯化反應(Mesylation)可得前驅物39;此外,將買來之乙二胺用Teoc保護基保護後,一樣進行氧化縮合反應接至Leucoquinizarin上,接著胺基(R1)用三苯基甲基保護基保護,再利用氟化鉀和Kryptofix 222將羥基上之Teoc保護基移去,得到前驅物49,接著前驅物49和和輔基,3-氟丙基對甲苯磺酸,做親核取代反應,可得氟化標準品48,產率為26%;最後將三苯基甲基保護基保護標準品48的胺基,可得氟化標準品38。 | zh_TW |
| dc.description.abstract | Based on the results of a series of studies on the pharmacological activity of fluoroaminoqnthraquinones in our laboratory, fluorine-18 labeled compound 48 was selected to be synthesized for the application of positron emission tomography in this study. The synthetic principle is to introduce fluorine-18 at the terminal step of the whole synthetic route and to optimize the total reaction time, as to minimize the decay of radioactive fluorin-18. Theoretically, this can be achieved by two synthetic methods: direct nucleophilic substitution through introducing fluorine-18 into precursor 2 and indirect substitution through introducing fluoring-18 labeled prosthetic group into precursor 1 to get the fluorine-18 labeled target compound 48. Precursor 1 (49), precursor 2 (39) and fluorination standard compound 38 and 48 were successfully synthesized in this study. First, the terminal hydroxyl group of commercial available starting material, N-(3-hydroxylpropyl)ethylenediamine, was protected with TBDMS protecting group and then bound to the Leucoquinizarin by condensation and oxidation reactions. The amino groups (R1 and R3) were protected by triphenylmethyl protecting group and then the TBDMS protecting group was removed by potassium fluoride and Kryptofix 222. Eventually, precursor 39 was obtain by Mesylation. Whereas for precursor 49, standard compound 48 and standard compound 38, the amino group (R2) in ethylenediamine was protected by Teoc protecting group and bound to Leucoquinizarin by condensation and oxidation reactions. Then, then the amino group (R1) was protected by triphenylmethyl protecting group and the Teoc protecting group was removed by potassium fluoride and Kryptofix 222 to get precursor 49. The standard compound 48, yield: 26%, was obtained from precursor 49 by nucleophilic substitution with the prosthetic group, 3-fluoropropyl-p-toluene sulfonate. Finally, the amino group in standard compound 48 was protected by triphenylmethyl protecting group to gain fluorination standard compound 38. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:13:22Z (GMT). No. of bitstreams: 1 ntu-99-R95423021-1.pdf: 6470480 bytes, checksum: ea8a55967fbd7668f806a03f8bb10dc5 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員審定書…………………………………………………………I
誌謝………………………………………………………………………II 中文摘要………………………………………………………………III 英文摘要………………………………………………………………IV 目錄……………………………………………………………………VI 圖目錄…………………………………………………………………VIII 表目錄…………………………………………………………………VIII 合成路徑目錄…………………………………………………………IX 第一章 背景與研究目的 一、背景………………………………………………………………1 (一)緒論…………………………………………………………1 (二)原理…………………………………………………………6 (三)本實驗室以前對氟化胺基蒽醌類化合物的研究………10 二、研究目的………………………………………………………14 第二章 實驗討論 一、氟化胺基蒽醌類化合物之合成:親核取代氟化反應…………15 二、氟化胺基蒽醌類化合物之合成:間接氟化反應………………34 三、最佳化氟化胺基蒽醌類化合物的側鏈結構…………………45 四、其他綜合比較…………………………………………………54 第三章 結論……………………………………………………………57 第四章 實驗部分 一、實驗藥品及溶劑………………………………………………58 二、實驗儀器和方法………………………………………………61 三、合成步驟及數據分析…………………………………………62 參考文獻………………………………………………………………103 附圖目錄………………………………………………………………108 附圖……………………………………………………………………112 | |
| dc.language.iso | zh-TW | |
| dc.subject | 正子斷層掃描 | zh_TW |
| dc.subject | 氟取代胺基蒽 | zh_TW |
| dc.subject | 醌 | zh_TW |
| dc.subject | 類化合物 | zh_TW |
| dc.subject | PET | en |
| dc.subject | Fluror-substituted Anthraquinones | en |
| dc.title | 合成有潛力做為正子斷層掃描腫瘤造影劑的氟取代蒽醌類化合物 | zh_TW |
| dc.title | Synthesis of Fluoro-substituted Anthraquinones as Potential Tumor Imaging Agents for Positron Emission Tomography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王光昭,陳基旺,梁碧惠 | |
| dc.subject.keyword | 氟取代胺基蒽,醌,類化合物,正子斷層掃描, | zh_TW |
| dc.subject.keyword | Fluror-substituted Anthraquinones,PET, | en |
| dc.relation.page | 185 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-01-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 6.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
