請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45294完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊立民(Lee-Ming Chuang) | |
| dc.contributor.author | Yu-Hung Chao | en |
| dc.contributor.author | 趙宇鴻 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:12:50Z | - |
| dc.date.available | 2015-03-12 | |
| dc.date.copyright | 2010-03-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-01-22 | |
| dc.identifier.citation | 1. Green, C.B., J.S. Takahashi, and J. Bass, The meter of metabolism. Cell, 2008. 134(5):728-42.
2. Takahashi, J.S., et al., The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet, 2008. 9(10):764-75. 3. Hirota, T. and Y. Fukada, Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog Sci, 2004. 21(4):359-68. 4. Preitner, N., et al., The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell, 2002. 110(2):251-60. 5. Ralph, M.R., et al., Transplanted suprachiasmatic nucleus determines circadian period. Science, 1990. 247(4945):975-8. 6. Vitaterna, M.H., et al., Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science, 1994. 264(5159):719-25. 7. King, D.P., et al., Positional cloning of the mouse circadian clock gene. Cell, 1997. 89(4):641-53. 8. Yoo, S.-H., et al., PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(15):5339-5346. 9. Laposky, A.D., et al., Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Lett, 2008. 582(1):142-51. 10. Panda, S., et al., Coordinated transcription of key pathways in the mouse by the circadian clock. Cell, 2002. 109(3):307-20. 11. McCarthy, J.J., et al., Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics, 2007. 31(1):86-95. 12. Akhtar, R.A., et al., Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol, 2002. 12(7):540-50. 13. Kita, Y., et al., Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics, 2002. 12(1):55-65. 14. Reddy, A.B., et al., Circadian orchestration of the hepatic proteome. Curr Biol, 2006. 16(11):1107-15. 15. Ueda, H.R., et al., A transcription factor response element for gene expression during circadian night. Nature, 2002. 418(6897):534-9. 16. Storch, K.F., et al., Extensive and divergent circadian gene expression in liver and heart. Nature, 2002. 417(6884):78-83. 17. Douris, N. and C.B. Green, NOC out the fat: a short review of the circadian deadenylase Nocturnin. Ann Med, 2008. 40(8):622-6. 18. Yang, X., et al., Nuclear receptor expression links the circadian clock to metabolism. Cell, 2006. 126(4):801-10. 19. Naylor, E., et al., The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci, 2000. 20(21):8138-43. 20. Gorbacheva, V.Y., et al., Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc Natl Acad Sci U S A, 2005. 102(9):3407-12. 21. McClung, C.A., et al., Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc Natl Acad Sci U S A, 2005. 102(26):9377-81. 22. Turek, F.W., et al., Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 2005. 308(5724):1043-5. 23. Bunger, M.K., et al., Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 2000. 103(7):1009-17. 24. Scott, E.M., A.M. Carter, and P.J. Grant, Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes (Lond), 2008. 32(4):658-62. 25. Rudic, R.D., et al., BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol, 2004. 2(11):e377. 26. Damiola, F., et al., Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev, 2000. 14(23):2950-61. 27. Stokkan, K.A., et al., Entrainment of the circadian clock in the liver by feeding. Science, 2001. 291(5503):490-3. 28. Kohsaka, A., et al., High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab, 2007. 6(5):414-21. 29. Rutter, J., et al., Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science, 2001. 293(5529):510-4. 30. Raghuram, S., et al., Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol, 2007. 14(12):1207-13. 31. Green, C.B. and J.C. Besharse, Identification of a novel vertebrate circadian clock-regulated gene encoding the protein nocturnin. Proc Natl Acad Sci U S A, 1996. 93(25):14884-8. 32. Green, C.B., Molecular control of Xenopus retinal circadian rhythms. J Neuroendocrinol, 2003. 15(4):350-4. 33. Wang, Y., et al., Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse. BMC Dev Biol, 2001. 1:9. 34. Baggs, J.E. and C.B. Green, Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr Biol, 2003. 13(3):189-98. 35. Green, C.B., et al., Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc Natl Acad Sci U S A, 2007. 104(23):9888-93. 36. Ramsey, K.M. and J. Bass, Lean gene and the clock machine. Proc Natl Acad Sci U S A, 2007. 104(23):9553-4. 37. Garbarino-Pico, E., et al., Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli. RNA, 2007. 13(5):745-55. 38. Cohen, P., The twentieth century struggle to decipher insulin signalling. Nat Rev Mol Cell Biol, 2006. 7(11):867-73. 39. Saltiel, A.R. and C.R. Kahn, Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001. 414(6865):799-806. 40. Cherrington, A.D., et al., Insulin action on the liver in vivo. Biochem Soc Trans, 2007. 35(Pt 5):1171-4. 41. Fritsche, L., et al., How insulin receptor substrate proteins regulate the metabolic capacity of the liver--implications for health and disease. Curr Med Chem, 2008. 15(13):1316-29. 42. Taniguchi, C.M., B. Emanuelli, and C.R. Kahn, Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol, 2006. 7(2):85-96. 43. Baudry, A., et al., Genetic manipulation of insulin signaling, action and secretion in mice. Insights into glucose homeostasis and pathogenesis of type 2 diabetes. EMBO Rep, 2002. 3(4):323-8. 44. Barthel, A., et al., Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J Biol Chem, 1999. 274(29):20281-6. 45. Green, C.B. and J.C. Besharse, Use of a high stringency differential display screen for identification of retinal mRNAs that are regulated by a circadian clock. Brain Res Mol Brain Res, 1996. 37(1-2):157-65. 46. Garbarino-Pico, E. and C.B. Green, Posttranscriptional regulation of mammalian circadian clock output. Cold Spring Harb Symp Quant Biol, 2007. 72:145-56. 47. Li, R., et al., CLOCK/BMAL1 regulates human nocturnin transcription through binding to the E-box of nocturnin promoter. Mol Cell Biochem, 2008. 317(1-2):169-77. 48. Dupressoir, A., et al., Identification of four families of yCCR4- and Mg2+-dependent endonuclease-related proteins in higher eukaryotes, and characterization of orthologs of yCCR4 with a conserved leucine-rich repeat essential for hCAF1/hPOP2 binding. BMC Genomics, 2001. 2(1):9. 49. Dupressoir, A., et al., Characterization of a mammalian gene related to the yeast CCR4 general transcription factor and revealed by transposon insertion. J Biol Chem, 1999. 274(43):31068-75. 50. Chen, J., Y.C. Chiang, and C.L. Denis, CCR4, a 3'-5' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J, 2002. 21(6):1414-26. 51. Tucker, M., et al., Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J, 2002. 21(6):1427-36. 52. Gronke, S., et al., curled Encodes the Drosophila Homolog of the Vertebrate Circadian Deadenylase Nocturnin. Genetics, 2009. 53. Munoz, E., M. Brewer, and R. Baler, Circadian Transcription. Thinking outside the E-Box. J Biol Chem, 2002. 277(39):36009-17. 54. Biben, C., et al., Novel muscle-specific enhancer sequences upstream of the cardiac actin gene. Mol Cell Biol, 1994. 14(5):3504-13. 55. Antonsson, C., et al., Constitutive function of the basic helix-loop-helix/PAS factor Arnt. Regulation of target promoters via the E box motif. J Biol Chem, 1995. 270(23):13968-72. 56. Huang, J., et al., Differences between MyoD DNA binding and activation site requirements revealed by functional random sequence selection. Mol Cell Biol, 1996. 16(7):3893-900. 57. Artandi, S.E., et al., The basic helix-loop-helix-zipper domain of TFE3 mediates enhancer-promoter interaction. Mol Cell Biol, 1994. 14(12):7704-16. 58. Potter, J.J., et al., The upstream stimulatory factor binds to and activates the promoter of the rat class I alcohol dehydrogenase gene. J Biol Chem, 1991. 266(23):15457-63. 59. Darlington, T.K., et al., Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science, 1998. 280(5369):1599-603. 60. Gekakis, N., et al., Role of the CLOCK protein in the mammalian circadian mechanism. Science, 1998. 280(5369):1564-9. 61. Nakahata, Y., et al., A direct repeat of E-box-like elements is required for cell-autonomous circadian rhythm of clock genes. BMC Mol Biol, 2008. 9:1. 62. O'Brien, R.M., et al., Insulin-regulated gene expression. Biochem Soc Trans, 2001. 29(Pt 4):552-8. 63. Moustaid, N., R.S. Beyer, and H.S. Sul, Identification of an insulin response element in the fatty acid synthase promoter. J Biol Chem, 1994. 269(8):5629-34. 64. Wang, D. and H.S. Sul, Upstream stimulatory factors bind to insulin response sequence of the fatty acid synthase promoter. USF1 is regulated. J Biol Chem, 1995. 270(48):28716-22. 65. Wang, D. and H.S. Sul, Upstream stimulatory factor binding to the E-box at -65 is required for insulin regulation of the fatty acid synthase promoter. J Biol Chem, 1997. 272(42):26367-74. 66. Wang, D. and H.S. Sul, Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt. J Biol Chem, 1998. 273(39):25420-6. 67. Latasa, M.J., et al., Nutritional regulation of the fatty acid synthase promoter in vivo: sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element. Proc Natl Acad Sci U S A, 2000. 97(19):10619-24. 68. Latasa, M.J., et al., Occupancy and function of the -150 sterol regulatory element and -65 E-box in nutritional regulation of the fatty acid synthase gene in living animals. Mol Cell Biol, 2003. 23(16):5896-907. 69. Griffin, M.J. and H.S. Sul, Insulin regulation of fatty acid synthase gene transcription: roles of USF and SREBP-1c. IUBMB Life, 2004. 56(10):595-600. 70. Griffin, M.J., et al., Direct interaction between USF and SREBP-1c mediates synergistic activation of the fatty-acid synthase promoter. J Biol Chem, 2007. 282(8):5453-67. 71. Wong, R.H., et al., A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell, 2009. 136(6):1056-72. 72. Wong, R.H. and H.S. Sul, DNA-PK: relaying the insulin signal to USF in lipogenesis. Cell Cycle, 2009. 8(13):1977-8. 73 Dunlap, J.C., Molecular bases for circadian clocks. Cell, 1999. 96(2):271-90. 74. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4):402-8. 75. Iitaka, C., et al., A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem, 2005. 280(33):29397-402. 76. Gordon L. Hager, James G. McNally, and Tom Mistel, Transcription Dynamics. Mol Cell, 2009. 35:741-753 77. Juan Mata, Samuel Marguerat and Ju¨ rg Ba¨ hler, Post-transcriptional control of gene expression: a genome-wide perspective.Trend.in Biomed. Sci., 2005. 30(9):506-514 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45294 | - |
| dc.description.abstract | 生理時鐘在生物體的許多生理層面上扮演重要角色,其包含代謝與行為表徵。近期有越來越多研究指出作息不正常的人與代謝異常症有高度關聯,暗示生理時鐘與代謝有著緊密的連結。Nocturnin (Noc) 起初在非洲蟾蜍(Xenopus)及小鼠的許多組織中發現,特別是在肝臟組織,其mRNA在夜間表現量會上升。Noc是一個生理時鐘所調控的去腺嘧啶酶 (deadenylase),當小鼠noc基因有缺陷時,會減少高油脂飲食造成的肥胖與脂肪肝,此外葡萄糖耐受性與胰島素感受性都有變異,進而得知Noc在肝臟執行正常的代謝功能上十分重要;肝臟是維持體內能量平衡與代謝的最重要器官,最主要是受到胰島素的調節,當胰島素感受性受損或其功能失調時,往往造成代謝異常,然而胰島素與Noc之間的關聯在過去的研究中尚未有明確的探討。本篇論文針對胰島素如何調節hNoc基因表現的分子機制進行研究,首先我們發現胰島素會促進肝癌細胞Hep3B中hNoc基因的表現,而且胰島素並不影響hNoc的mRNA及protein穩定性,表示胰島素對於hNoc的影響可能是在轉錄調節的層次;我們進一步針對hNoc啟動子進行研究,證實位在其中的強化子(Enhancer-box; E-box)對於胰島素促進hNoc基因表現調節是很重要的;另外利用ChIP (chromatin immunoprecipitation)實驗,發現轉錄因子USF1,USF2,Clock以及Bmal1在胰島素促進下與E-boxes形成複合體;在hNoc轉錄起始點附近的Histone3的第9及14位離胺酸乙醯化之程度有顯著增加,因此我們認為胰島素對於hNoc基因表現主要是透過轉錄的調節。此外,我們研究胰島素所涉及的訊息傳遞路徑,我們發現胰島素影響hNoc轉錄調控是經由PI3K/AKT路徑而非MAPK路徑。透過本篇論文的研究,我們對於胰島素調節hNoc活化的分子機制有更明確的闡述,也強化了Nocturnin在胰島素於肝臟執行代謝功能的重要性。 | zh_TW |
| dc.description.abstract | Circadian clocks temporally organize many aspects of physiology, including metabolic processes and behaviors. Recently, more and more studies indicate that the circadian clocks are intimately interlocked with metabolism. Nocturnin (Noc), a circadian-controlled deadenylase, originally was discovered as a nocturnally expressed deadenylase in many tissues of Xenopus and mouse, especially in liver. The nocturnin knock-out mice has striking physiological features which are characterized as resistant to diet-induced obesity and hepatic steatosis, and the altered glucose tolerance and insulin sensitivity. These suggest that Nocturnin play roles in regulation of the metabolic functions in liver. On the other hand, liver is the major metabolic organ of insulin actions. However, so far, the relationship between insulin and nocturnin is poorly understood. In this study, we confirm that insulin can up-regulate hNoc in mRNA and protein level in Hep3B cells, and the presence of insulin does not affect the mRNA and protein stability of hNoc. We propose the major regulation step is the transcriptional regulation. Moreover, we learn from the promoter assay that the canonical enhancer-boxes (E-boxes) located at the promoter of hNoc are responsible for the hNoc upregulation by insulin. The basic helix-loop-helix (bHLH) family transcription factors USF1, USF2, Clock and Bmal1 were demonstrated to form a dynamic complex on the E-boxes and contribute to the hNoc transcription activation after insulin treatment. Furthermore, the pathway of insulin-induced hNoc upregulation is demonstrated to be phosphoinositide 3’-kinase (PI3K)/AKT pathway but not mitogen-activated protein kinase (MAPK) pathway. Conclusively, hNoc activation by insulin is mediated by the PI3K/AKT pathway and is mainly regulated at the transcriptional regulation level. These findings unveil the detail molecular mechanism of hNoc activation by insulin and enforce the importance of Nocturnin in the anabolic roles of insulin in liver. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:12:50Z (GMT). No. of bitstreams: 1 ntu-99-R96448012-1.pdf: 1795034 bytes, checksum: 16afc8882073def1b367fd0b3f88474b (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要…………………………………………………………………I
Abstract…………………………………………………………………II Table of contents……………………………………………………III List of figures………………………………………………………VI List of tables………………………………………………………VII Abbreviation…………………………………………………………VIII 1.Introduction…………………………………………………………1 1.1Nocturnin in circadian rhythms and metabolism……………1 1.1.1 Molecular mechanism of circadian rhythms……………1 1.1.2 The interlock between circadian rhythms and metabolism……………………………………………………2 1.1.3 Nocturnin plays a role between circadian clock and metabolism………………………………………………5 1.2Biological functions of insulin………………………………7 1.2.1 The anabolic functions of insulin………………………7 1.2.2 Functions of insulin in liver……………………………7 1.2.3 The signaling pathway of insulin receptor……………8 1.3 nocturnin…………………………………………………………11 1.3.1 Discovery………………………………………………………11 1.3.2 Gene structure and the functions of encoded protein…………………………………………………………11 1.3.3 Physiologic functions………………………………………13 1.4 Enhancer-box (E-box)……………………………………………14 1.5 Motivation…………………………………………………………16 2.Materials and Methods……………………………………………17 2.1 Reagents……………………………………………………………17 2.2 Cell culture………………………………………………………17 2.3 Preparation of whole cell extraction………………………17 2.4 Western blotting…………………………………………………18 2.5 Total RNA isolation and Reverse-transcription quantitative PCR (RT-qPCR)……………………………………18 2.6 Modification of reporter constructs of promoter region of hNoc……………………………………………………………19 2.7 In vitro mutagenesis of human nocturnin canonical E- boxes………………………………………………………………19 2.8 Promoter assay…………………………………………………20 2.9 Chromatin immunoprecipitation………………………………20 2.10 Protein stability assay………………………………………22 2.11 RNA stability assay……………………………………………22 2.12 Statistical analysis…………………………………………22 3. Results………………………………………………………………23 3.1 hNoc is up-regulated by insulin in Hep3B cells…………23 3.2 mRNA and protein stability of hNoc are not affected by insulin……………………………………………………………23 3.3 Several insulin responsible elements (IREs) locate at the promoter region of hNoc………………………………………23 3.4 Promoter constructs with E-boxes show higher promoter activity after insulin induction……………………………24 3.5 Role of transcriptional control on hNoc upregulation by insulin……………………………………………………………25 3.6 hNoc upregulation by insulin is through PI3K/AKT- dependent pathway………26 4.Conclusion……………………………………………………………28 5.Discussion……………………………………………………………29 5.1 The rhythmic expression pattern of hNoc…………………29 5.2 The role of MAPK pathway and PKC pathway in insulin signaling pathway………………………………………………29 5.3 The kinase activity of GSK 3β in CCGs expression control……………………………………………………………29 5.4 The basal promoter activity of truncated and mutated-E- boxes promoter constructs……………………………………30 5.5 The difference between E-box1 and E-box2…………………31 5.6 The dynamic complex formation on the E-boxes of hNoc…31 5.7 The putative functions of hNoc on insulin actions in liver………………………………………………………………32 Figures…………………………………………………………………33 Tables……………………………………………………………………46 Supplements……………………………………………………………51 References………………………………………………………………63 | |
| dc.language.iso | en | |
| dc.subject | 肝臟細胞 | zh_TW |
| dc.subject | nocturnin | zh_TW |
| dc.subject | 胰島素 | zh_TW |
| dc.subject | 強化子 | zh_TW |
| dc.subject | 轉錄調節 | zh_TW |
| dc.subject | transcriptional regulation | en |
| dc.subject | nocturnin | en |
| dc.subject | insulin | en |
| dc.subject | E-box | en |
| dc.subject | Hep3B cells | en |
| dc.title | 胰島素在Hep3B肝癌細胞中對nocturnin基因表現調節之研究 | zh_TW |
| dc.title | The effects of insulin on nocturnin expression regulation in Hep3B cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余家利(Chia-Li Yu),呂勝春(Sheng-Chung Lee) | |
| dc.subject.keyword | nocturnin,胰島素,強化子,轉錄調節,肝臟細胞, | zh_TW |
| dc.subject.keyword | nocturnin,insulin,E-box,transcriptional regulation,Hep3B cells, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-01-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
