Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45292
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張智芬
dc.contributor.authorChun-Mei Huen
dc.contributor.author胡春美zh_TW
dc.date.accessioned2021-06-15T04:12:44Z-
dc.date.available2013-03-12
dc.date.copyright2010-03-12
dc.date.issued2010
dc.date.submitted2010-01-22
dc.identifier.citationAagaard, L., and Rossi, J. J. (2007). RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59, 75-86.
Agarwal, K. C., Miech, R. P., and Parks, R. E., Jr. (1978). Guanylate kinases from human erythrocytes, hog brain, and rat liver. Methods Enzymol 51, 483-490.
Allegra, C. (2002). Thymidylate synthase levels: prognostic, predictive, or both? J Clin Oncol 20, 1711-1713.
Allegra, C. J., Paik, S., Colangelo, L. H., Parr, A. L., Kirsch, I., Kim, G., Klein, P., Johnston, P. G., Wolmark, N., and Wieand, H. S. (2003). Prognostic value of thymidylate synthase, Ki-67, and p53 in patients with Dukes' B and C colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project collaborative study. J Clin Oncol 21, 241-250.
An, D. S., Qin, F. X., Auyeung, V. C., Mao, S. H., Kung, S. K., Baltimore, D., and Chen, I. S. (2006). Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 14, 494-504.
Arner, E. S., and Eriksson, S. (1995). Mammalian deoxyribonucleoside kinases. Pharmacol Ther 67, 155-186.
Attardi, L. D. (2005). The role of p53-mediated apoptosis as a crucial anti-tumor response to genomic instability: lessons from mouse models. Mutat Res 569, 145-157.
Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature 447, 407-412.
Berkovich, E., Monnat, R. J., Jr., and Kastan, M. B. (2007). Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9, 683-690.
Bradshaw, H. D., Jr., and Deininger, P. L. (1984). Human thymidine kinase gene: molecular cloning and nucleotide sequence of a cDNA expressible in mammalian cells. Mol Cell Biol 4, 2316-2320.
Brooks, C. L., and Gu, W. (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell 21, 307-315.
Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R., and Lane, D. P. (2009). Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9, 862-873.
Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., Sedivy, J. M., Kinzler, K. W., and Vogelstein, B. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497-1501.
Bunz, F., Hwang, P. M., Torrance, C., Waldman, T., Zhang, Y., Dillehay, L., Williams, J., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104, 263-269.
Canellakis, E. S., Jaffe, J. J., Mantsavinos, R., and Krakow, J. S. (1959). Pyrimidine metabolism. IV. A comparison of normal and regenerating rat liver. J Biol Chem 234, 2096-2099.
Carreras, C. W., and Santi, D. V. (1995). The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64, 721-762.
Carter, S. K. (1975). Adriamycin-a review. J Natl Cancer Inst 55, 1265-1274.
Chang, Z. F., Huang, D. Y., and Hsue, N. C. (1994). Differential phosphorylation of human thymidine kinase in proliferating and M phase-arrested human cells. J Biol Chem 269, 21249-21254.
Chang, Z. F., Huang, D. Y., and Lai, T. C. (1995). Different regulation of the human thymidine kinase promoter in normal human diploid IMR-90 fibroblasts and HeLa cells. J Biol Chem 270, 27374-27379.
Chimploy, K., and Mathews, C. K. (2001). Mouse ribonucleotide reductase control: influence of substrate binding upon interactions with allosteric effectors. J Biol Chem 276, 7093-7100.
Cory, A. H., Owen, T. C., Barltrop, J. A., and Cory, J. G. (1991). Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3, 207-212.
Coultas, L., and Strasser, A. (2000). The molecular control of DNA damage-induced cell death. Apoptosis 5, 491-507.
d'Adda di Fagagna, F., Teo, S. H., and Jackson, S. P. (2004). Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 18, 1781-1799.
Danenberg, P. V. (1977). Thymidylate synthetase - a target enzyme in cancer chemotherapy. Biochim Biophys Acta 473, 73-92.
Dare, E., Zhang, L. H., Jenssen, D., and Bianchi, V. (1995). Molecular analysis of mutations in the hprt gene of V79 hamster fibroblasts: effects of imbalances in the dCTP, dGTP and dTTP pools. J Mol Biol 252, 514-521.
Delacote, F., and Lopez, B. S. (2008). Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability maintenance: the trans-S double-strand break repair model. Cell Cycle 7, 33-38.
Deweese, J. E., and Osheroff, N. (2009). The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing. Nucleic Acids Res 37, 738-748.
Dobzhansky, T. (1946). Genetics of Natural Populations. Xiii. Recombination and Variability in Populations of Drosophila Pseudoobscura. Genetics 31, 269-290.
Evrard, A., Cuq, P., Ciccolini, J., Vian, L., and Cano, J. P. (1999). Increased cytotoxicity and bystander effect of 5-fluorouracil and 5-deoxy-5-fluorouridine in human colorectal cancer cells transfected with thymidine phosphorylase. Br J Cancer 80, 1726-1733.
Familiar, O., Munier-Lehmann, H., Negri, A., Gago, F., Douguet, D., Rigouts, L., Hernandez, A. I., Camarasa, M. J., and Perez-Perez, M. J. (2008). Exploring acyclic nucleoside analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase. ChemMedChem 3, 1083-1093.
Fei, P., and El-Deiry, W. S. (2003). P53 and radiation responses. Oncogene 22, 5774-5783.
Fischel, J. L., Formento, P., Ciccolini, J., Rostagno, P., Etienne, M. C., Catalin, J., and Milano, G. (2002). Impact of the oxaliplatin-5 fluorouracil-folinic acid combination on respective intracellular determinants of drug activity. Br J Cancer 86, 1162-1168.
Fortune, J. M., and Osheroff, N. (2000). Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog Nucleic Acid Res Mol Biol 64, 221-253.
Gasse, C., Douguet, D., Huteau, V., Marchal, G., Munier-Lehmann, H., and Pochet, S. (2008). Substituted benzyl-pyrimidines targeting thymidine monophosphate kinase of Mycobacterium tuberculosis: synthesis and in vitro anti-mycobacterial activity. Bioorg Med Chem 16, 6075-6085.
Giovannetti, E., Backus, H. H., Wouters, D., Ferreira, C. G., van Houten, V. M., Brakenhoff, R. H., Poupon, M. F., Azzarello, A., Pinedo, H. M., and Peters, G. J. (2007). Changes in the status of p53 affect drug sensitivity to thymidylate synthase (TS) inhibitors by altering TS levels. Br J Cancer 96, 769-775.
Goulian, M., Bleile, B., and Tseng, B. Y. (1980a). The effect of methotrexate on levels of dUTP in animal cells. J Biol Chem 255, 10630-10637.
Goulian, M., Bleile, B., and Tseng, B. Y. (1980b). Methotrexate-induced misincorporation of uracil into DNA. Proc Natl Acad Sci U S A 77, 1956-1960.
Grem, J. L., Danenberg, K. D., Behan, K., Parr, A., Young, L., Danenberg, P. V., Nguyen, D., Drake, J., Monks, A., and Allegra, C. J. (2001). Thymidine kinase, thymidylate synthase, and dihydropyrimidine dehydrogenase profiles of cell lines of the National Cancer Institute's Anticancer Drug Screen. Clin Cancer Res 7, 999-1009.
Haouz, A., Vanheusden, V., Munier-Lehmann, H., Froeyen, M., Herdewijn, P., Van Calenbergh, S., and Delarue, M. (2003). Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase. New insights into the phosphoryl transfer mechanism. J Biol Chem 278, 4963-4971.
Hardy, L. W., Finer-Moore, J. S., Montfort, W. R., Jones, M. O., Santi, D. V., and Stroud, R. M. (1987). Atomic structure of thymidylate synthase: target for rational drug design. Science 235, 448-455.
Hatse, S., De Clercq, E., and Balzarini, J. (1999). Role of antimetabolites of purine and pyrimidine nucleotide metabolism in tumor cell differentiation. Biochem Pharmacol 58, 539-555.
Helleday, T., Petermann, E., Lundin, C., Hodgson, B., and Sharma, R. A. (2008). DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8, 193-204.
Hoeijmakers, J. H. (2001). Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374.
Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991). p53 mutations in human cancers. Science 253, 49-53.
Houghton, J. A., Tillman, D. M., and Harwood, F. G. (1995). Ratio of 2'-deoxyadenosine-5'-triphosphate/thymidine-5'-triphosphate influences the commitment of human colon carcinoma cells to thymineless death. Clin Cancer Res 1, 723-730.
Hu, C. M., and Chang, Z. F. (2008). Synthetic lethality by lentiviral short hairpin RNA silencing of thymidylate kinase and doxorubicin in colon cancer cells regardless of the p53 status. Cancer Res 68, 2831-2840.
Huang, S. H., Tang, A., Drisco, B., Zhang, S. Q., Seeger, R., Li, C., and Jong, A. (1994). Human dTMP kinase: gene expression and enzymatic activity coinciding with cell cycle progression and cell growth. DNA Cell Biol 13, 461-471.
Hurley, L. H. (2002). DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2, 188-200.
Hwang, J. T., Ha, J., and Park, O. J. (2005). Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun 332, 433-440.
Iglehart, J. D., and Silver, D. P. (2009). Synthetic lethality--a new direction in cancer-drug development. N Engl J Med 361, 189-191.
Ingraham, H. A., Tseng, B. Y., and Goulian, M. (1982). Nucleotide levels and incorporation of 5-fluorouracil and uracil into DNA of cells treated with 5-fluorodeoxyuridine. Mol Pharmacol 21, 211-216.
Jiang, H., Reinhardt, H. C., Bartkova, J., Tommiska, J., Blomqvist, C., Nevanlinna, H., Bartek, J., Yaffe, M. B., and Hemann, M. T. (2009). The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 23, 1895-1909.
Johansson, M., and Karlsson, A. (1997). Cloning of the cDNA and chromosome localization of the gene for human thymidine kinase 2. J Biol Chem 272, 8454-8458.
Johnson, R. A., and Schmidt, R. R. (1966). Enzymic control of nucleic acid synthesis during synchronous growth of Chlorella pyrenoidosa. I. Deoxythymidine monophosphate kinase. Biochim Biophys Acta 129, 140-144.
Johnston, P. G., Lenz, H. J., Leichman, C. G., Danenberg, K. D., Allegra, C. J., Danenberg, P. V., and Leichman, L. (1995). Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res 55, 1407-1412.
Kaelin, W. G., Jr. (2009). Synthetic lethality: a framework for the development of wiser cancer therapeutics. Genome Med 1, 99.
Ke, P. Y., and Chang, Z. F. (2004). Mitotic degradation of human thymidine kinase 1 is dependent on the anaphase-promoting complex/cyclosome-CDH1-mediated pathway. Mol Cell Biol 24, 514-526.
Ke, P. Y., Kuo, Y. Y., Hu, C. M., and Chang, Z. F. (2005). Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes Dev 19, 1920-1933.
Kellner, U., Sehested, M., Jensen, P. B., Gieseler, F., and Rudolph, P. (2002). Culprit and victim -- DNA topoisomerase II. Lancet Oncol 3, 235-243.
Kemp, C. J., Wheldon, T., and Balmain, A. (1994). p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 8, 66-69.
Kricka, L. J. (1988). Clinical and biochemical applications of luciferases and luciferins. Anal Biochem 175, 14-21.
Lane, D. P. (1992). Cancer. p53, guardian of the genome. Nature 358, 15-16.
Lavie, A., Konrad, M., Brundiers, R., Goody, R. S., Schlichting, I., and Reinstein, J. (1998a). Crystal structure of yeast thymidylate kinase complexed with the bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-thymidyl) pentaphosphate (TP5A) at 2.0 A resolution: implications for catalysis and AZT activation. Biochemistry 37, 3677-3686.
Lavie, A., Ostermann, N., Brundiers, R., Goody, R. S., Reinstein, J., Konrad, M., and Schlichting, I. (1998b). Structural basis for efficient phosphorylation of 3'-azidothymidine monophosphate by Escherichia coli thymidylate kinase. Proc Natl Acad Sci U S A 95, 14045-14050.
Lee, L. S., and Cheng, Y. (1977). Human thymidylate kinase. Purification, characterization, and kinetic behavior of the thymidylate kinase derived from chronic myelocytic leukemia. J Biol Chem 252, 5686-5691.
Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell 88, 323-331.
Li, C. X., Parker, A., Menocal, E., Xiang, S., Borodyansky, L., and Fruehauf, J. H. (2006). Delivery of RNA interference. Cell Cycle 5, 2103-2109.
Li de la Sierra, I., Munier-Lehmann, H., Gilles, A. M., Barzu, O., and Delarue, M. (2001). X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 A resolution. J Mol Biol 311, 87-100.
Liang, P., Averboukh, L., Zhu, W., Haley, T., and Pardee, A. B. (1995). Molecular characterization of the murine thymidylate kinase gene. Cell Growth Differ 6, 1333-1338.
Lieu, C., Chow, L., Pierson, A. S., Eckhardt, S. G., O'Bryant, C. L., Morrow, M., Tran, Z. V., Wright, J. J., and Gore, L. (2009). A phase I study of bortezomib, etoposide and carboplatin in patients with advanced solid tumors refractory to standard therapy. Invest New Drugs 27, 53-62.
Liu, Y., and Deisseroth, A. (2006). Tumor vascular targeting therapy with viral vectors. Blood 107, 3027-3033.
Longley, D. B., Boyer, J., Allen, W. L., Latif, T., Ferguson, P. R., Maxwell, P. J., McDermott, U., Lynch, M., Harkin, D. P., and Johnston, P. G. (2002). The role of thymidylate synthase induction in modulating p53-regulated gene expression in response to 5-fluorouracil and antifolates. Cancer Res 62, 2644-2649.
Longley, D. B., Harkin, D. P., and Johnston, P. G. (2003). 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3, 330-338.
Lowe, S. W., Ruley, H. E., Jacks, T., and Housman, D. E. (1993). p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957-967.
Lowndes, N. F., and Toh, G. W. (2005). DNA repair: the importance of phosphorylating histone H2AX. Curr Biol 15, R99-R102.
Mader, R. M., Muller, M., and Steger, G. G. (1998). Resistance to 5-fluorouracil. Gen Pharmacol 31, 661-666.
Martomo, S. A., and Mathews, C. K. (2002). Effects of biological DNA precursor pool asymmetry upon accuracy of DNA replication in vitro. Mutat Res 499, 197-211.
Mattano, S. S., Palella, T. D., and Mitchell, B. S. (1990). Mutations induced at the hypoxanthine-guanine phosphoribosyltransferase locus of human T-lymphoblasts by perturbations of purine deoxyribonucleoside triphosphate pools. Cancer Res 50, 4566-4571.
Meyers, M., Hwang, A., Wagner, M. W., Bruening, A. J., Veigl, M. L., Sedwick, W. D., and Boothman, D. A. (2003). A role for DNA mismatch repair in sensing and responding to fluoropyrimidine damage. Oncogene 22, 7376-7388.
Middleton, M. R., and Margison, G. P. (2003). Improvement of chemotherapy efficacy by inactivation of a DNA-repair pathway. Lancet Oncol 4, 37-44.
Miyata, S., Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Kuboyama, T., Ugaki, M., and Namba, S. (2003). Two different thymidylate kinase gene homologues, including one that has catalytic activity, are encoded in the onion yellows phytoplasma genome. Microbiology 149, 2243-2250.
Mukhopadhyay, U. K., Senderowicz, A. M., and Ferbeyre, G. (2005). RNA silencing of checkpoint regulators sensitizes p53-defective prostate cancer cells to chemotherapy while sparing normal cells. Cancer Res 65, 2872-2881.
Munier-Lehmann, H., Chaffotte, A., Pochet, S., and Labesse, G. (2001). Thymidylate kinase of Mycobacterium tuberculosis: a chimera sharing properties common to eukaryotic and bacterial enzymes. Protein Sci 10, 1195-1205.
Navid, F., Santana, V. M., Billups, C. A., Merchant, T. E., Furman, W. L., Spunt, S. L., Cain, A. M., Rao, B. N., Hale, G. A., and Pappo, A. S. (2006). Concomitant administration of vincristine, doxorubicin, cyclophosphamide, ifosfamide, and etoposide for high-risk sarcomas: the St. Jude Children's Research Hospital experience. Cancer 106, 1846-1856.
Nitiss, J. L. (2009). Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9, 338-350.
O'Neill, K. L., Buckwalter, M. R., and Murray, B. K. (2001). Thymidine kinase: diagnostic and prognostic potential. Expert Rev Mol Diagn 1, 428-433.
Ostermann, N., Schlichting, I., Brundiers, R., Konrad, M., Reinstein, J., Veit, T., Goody, R. S., and Lavie, A. (2000). Insights into the phosphoryltransfer mechanism of human thymidylate kinase gained from crystal structures of enzyme complexes along the reaction coordinate. Structure 8, 629-642.
Ostermann, N., Segura-Pena, D., Meier, C., Veit, T., Monnerjahn, C., Konrad, M., and Lavie, A. (2003). Structures of human thymidylate kinase in complex with prodrugs: implications for the structure-based design of novel compounds. Biochemistry 42, 2568-2577.
Palumbo, A., Gay, F., Bringhen, S., Falcone, A., Pescosta, N., Callea, V., Caravita, T., Morabito, F., Magarotto, V., Ruggeri, M., et al. (2008). Bortezomib, doxorubicin and dexamethasone in advanced multiple myeloma. Ann Oncol 19, 1160-1165.
Papamichael, D. (1999). The use of thymidylate synthase inhibitors in the treatment of advanced colorectal cancer: current status. Oncologist 4, 478-487.
Pardo, B., Gomez-Gonzalez, B., and Aguilera, A. (2009). DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci 66, 1039-1056.
Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., and Bonner, W. M. (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10, 886-895.
Phear, G., and Meuth, M. (1989). The genetic consequences of DNA precursor pool imbalance: sequence analysis of mutations induced by excess thymidine at the hamster aprt locus. Mutat Res 214, 201-206.
Pochet, S., Dugue, L., Douguet, D., Labesse, G., and Munier-Lehmann, H. (2002). Nucleoside analogues as inhibitors of thymidylate kinases: possible therapeutic applications. Chembiochem 3, 108-110.
Pochet, S., Dugue, L., Labesse, G., Delepierre, M., and Munier-Lehmann, H. (2003). Comparative study of purine and pyrimidine nucleoside analogues acting on the thymidylate kinases of Mycobacterium tuberculosis and of humans. Chembiochem 4, 742-747.
Puhalla, S., Mrozek, E., Young, D., Ottman, S., McVey, A., Kendra, K., Merriman, N. J., Knapp, M., Patel, T., Thompson, M. E., et al. (2008). Randomized phase II adjuvant trial of dose-dense docetaxel before or after doxorubicin plus cyclophosphamide in axillary node-positive breast cancer. J Clin Oncol 26, 1691-1697.
Rahman, L., Voeller, D., Rahman, M., Lipkowitz, S., Allegra, C., Barrett, J. C., Kaye, F. J., and Zajac-Kaye, M. (2004). Thymidylate synthase as an oncogene: a novel role for an essential DNA synthesis enzyme. Cancer Cell 5, 341-351.
Reichard, P. (1988). Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 57, 349-374.
Reinhardt, H. C., Aslanian, A. S., Lees, J. A., and Yaffe, M. B. (2007). p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11, 175-189.
Ronner, P., Friel, E., Czerniawski, K., and Frankle, S. (1999). Luminometric assays of ATP, phosphocreatine, and creatine for estimation of free ADP and free AMP. Anal Biochem 275, 208-216.
Rose, M. G., Farrell, M. P., and Schmitz, J. C. (2002). Thymidylate synthase: a critical target for cancer chemotherapy. Clin Colorectal Cancer 1, 220-229.
Schmitz, J. C., Chen, T. M., and Chu, E. (2004). Small interfering double-stranded RNAs as therapeutic molecules to restore chemosensitivity to thymidylate synthase inhibitor compounds. Cancer Res 64, 1431-1435.
Sherman, P. A., and Fyfe, J. A. (1989). Enzymatic assay for deoxyribonucleoside triphosphates using synthetic oligonucleotides as template primers. Anal Biochem 180, 222-226.
Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3, 155-168.
Shoichet, B. K., Stroud, R. M., Santi, D. V., Kuntz, I. D., and Perry, K. M. (1993). Structure-based discovery of inhibitors of thymidylate synthase. Science 259, 1445-1450.
Shrivastav, M., De Haro, L. P., and Nickoloff, J. A. (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res 18, 134-147.
Song, S., Wheeler, L. J., and Mathews, C. K. (2003). Deoxyribonucleotide pool imbalance stimulates deletions in HeLa cell mitochondrial DNA. J Biol Chem 278, 43893-43896.
Spyrou, G., and Reichard, P. (1988). Dynamics of the thymidine triphosphate pool during the cell cycle of synchronized 3T3 mouse fibroblasts. Mutat Res 200, 37-43.
Takebe, N., Zhao, S. C., Ural, A. U., Johnson, M. R., Banerjee, D., Diasio, R. B., and Bertino, J. R. (2001). Retroviral transduction of human dihydropyrimidine dehydrogenase cDNA confers resistance to 5-fluorouracil in murine hematopoietic progenitor cells and human CD34+-enriched peripheral blood progenitor cells. Cancer Gene Ther 8, 966-973.
Takimoto, C. H., and Diggikar, S. (2005). Thymidylate synthase inhibitors. Cancer Chemother Biol Response Modif 22, 1-18.
Tillman, D. M., Petak, I., and Houghton, J. A. (1999). A Fas-dependent component in 5-fluorouracil/leucovorin-induced cytotoxicity in colon carcinoma cells. Clin Cancer Res 5, 425-430.
Valerie, K., and Povirk, L. F. (2003). Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22, 5792-5812.
Van Daele, I., Munier-Lehmann, H., Froeyen, M., Balzarini, J., and Van Calenbergh, S. (2007). Rational design of 5'-thiourea-substituted alpha-thymidine analogues as thymidine monophosphate kinase inhibitors capable of inhibiting mycobacterial growth. J Med Chem 50, 5281-5292.
Van Daele, I., Munier-Lehmann, H., Hendrickx, P. M., Marchal, G., Chavarot, P., Froeyen, M., Qing, L., Martins, J. C., and Van Calenbergh, S. (2006). Synthesis and biological evaluation of bicyclic nucleosides as inhibitors of M. tuberculosis thymidylate kinase. ChemMedChem 1, 1081-1090.
van Engeland, M., Nieland, L. J., Ramaekers, F. C., Schutte, B., and Reutelingsperger, C. P. (1998). Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31, 1-9.
Verborg, W. A., Campbell, L. R., Highley, M. S., and Rankin, E. M. (2008). Weekly cisplatin with oral etoposide: a well-tolerated and highly effective regimen in relapsed ovarian cancer. Int J Gynecol Cancer 18, 228-234.
Vousden, K. H., and Lane, D. P. (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8, 275-283.
Walker, J. V., and Nitiss, J. L. (2002). DNA topoisomerase II as a target for cancer chemotherapy. Cancer Invest 20, 570-589.
Walters, R. A., Tobey, R. A., and Ratliff, R. L. (1973). Cell-cycle-dependent variations of deoxyribonucleoside triphosphate pools in Chinese hamster cells. Biochim Biophys Acta 319, 336-347.
Wang, J. C. (2002). Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3, 430-440.
White, J. H., Green, S. R., Barker, D. G., Dumas, L. B., and Johnston, L. H. (1987). The CDC8 transcript is cell cycle regulated in yeast and is expressed coordinately with CDC9 and CDC21 at a point preceding histone transcription. Exp Cell Res 171, 223-231.
Yoo, B. K., Gredler, R., Vozhilla, N., Su, Z. Z., Chen, D., Forcier, T., Shah, K., Saxena, U., Hansen, U., Fisher, P. B., and Sarkar, D. (2009). Identification of genes conferring resistance to 5-fluorouracil. Proc Natl Acad Sci U S A 106, 12938-12943.
Zhao, Y., Thomas, H. D., Batey, M. A., Cowell, I. G., Richardson, C. J., Griffin, R. J., Calvert, A. H., Newell, D. R., Smith, G. C., and Curtin, N. J. (2006). Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res 66, 5354-5362.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45292-
dc.description.abstract胸苷三磷酸(dTTP)的供給是受嚴密的機制所調控,且對DNA合成及修補非常重要的過程。細胞內有兩條路徑可以提供胸苷三磷酸(dTTP)的合成,分別是新生成和回收路徑。無論是經由新生成或是回收路徑形成的胸苷酸(dTMP)都必須經由胸苷酸激酶(thymidylate kinase, TMPK)進一步的磷酸化形成胸苷二磷酸(dTDP),再透過核苷二磷酸激酶(NDK)的磷酸化最後完成dTTP的合成。抑制胸苷三磷酸(dTTP)的新合成路徑,已經是許多癌症化學治療藥劑發展的重要策略。
因為胸苷酸激酶(TMPK)在胸苷三磷酸(dTTP)新生成和回收路徑上都扮演重要的角色,我測試是否抑制胸苷酸激酶(TMPK)的表現,能夠降低胸苷三磷酸 (dTTP)的含量並促使癌細胞敏感於基因毒化物的毒殺能力。我使用p53功能正常和缺失的HCT-116結腸癌細胞作為研究材料,並利用以慢病毒為載體的shRNA去抑制TMPK的表現。結果顯示:表現TMPK shRNA可有效降低結腸癌細胞中胸苷酸激酶(TMPK)與胸苷三磷酸(dTTP)的含量。結合TMPK shRNA與廣泛使用於癌症化學治療的試劑–小紅莓(doxorubicin),則可顯著增加p53功能正常和缺失的HCT-116結腸癌細胞對於小紅莓(doxorubicin)的敏感度。相對而言,若只是降低胸苷三磷酸(dTTP)新合成路徑中重要酵素—胸苷酸合成酶(thymidylate synthase, TS)的表現量與結合小紅莓(doxorubicin)的治療,並無法增進p53功能缺失的結腸癌細胞走向死亡,因為回收路徑的胸腺嘧啶激酶(thymidine kinase1, TK1)會彌補新合成路徑中胸苷酸合成酶(TS) 表現量的降低,以維持細胞中胸苷三磷酸(dTTP)的含量,導致治療效果不佳。因此,專一的抑制胸苷酸激酶(TMPK)的功能並結合低劑量小紅莓(doxorubicin)的治療,是一種非常有用的策略,可使癌細胞更容易被化療藥物所毒殺且不受p53功能影響。
因為小片段干擾RNA的應用仍然受限於其遞送的效率,因此利用小分子去抑制胸苷酸激酶(TMPK)的活性應是較為可行的策略。但目前針對人類胸苷酸激酶(TMPK)並沒有專一性高的抑制劑,因此為了去尋找專一性高的人類胸苷酸激酶(TMPK)抑制劑。我建立一種新方法適用於高效率藥物篩選,透過此新方法,篩選到一個化合物,命名為H9805,它可以有效的降低人類TMPK的活性,其IC50為0.61 ± 0.02 μM。更進一步,用H9805化合物處理各種癌細胞,結果發現:H9805化合物可以有效降低各種癌細胞內胸苷三磷酸(dTTP)的含量。MTS分析和克隆形成分析都顯示:經過H9805化合物處理的細胞,增加低劑量小紅莓所誘導的細胞死亡。這些研究資料暗示:H9805化合物是一個有潛力的前驅化合物,可以應用在促進癌細胞對於化學治療之毒殺作用。
總結,本論文的工作,闡明了新生成和回收路徑供給胸苷三磷酸(dTTP),對於DNA修復過程的重要性,以及提供一種治療癌症的新洞見,抑制胸苷酸激酶(TMPK)的活性可增加癌細胞對於化學治療的敏感度,而有效促使癌細胞死亡。
zh_TW
dc.description.abstractIntracellular supply of deoxythymidine triphosphate (dTTP) is a highly regulated process and is important for DNA replication and repair processes. Supply of dTTP in the cells is controlled by de novo and salvage pathways, by which dTMP is synthesized. Subsequent phosphorylation of dTMP by thymidylate kinase (TMPK) gives dTDP, which is then converted to dTTP by dNDP kinase for DNA synthesis. Targeting the de novo pathway of dTTP synthesis has been one dogma for chemotherapeutic drug development.
Given the emerged role of TMPK in de novo and salvage pathways, I tested whether TMPK knockdown is able to deplete dTTP level and sensitize cancer cells to genotoxic insults. By using p53(+/+) and p53(-/-) HCT-116 colon cancer cells and lentiviral-based shRNA to silence TMPK, the experimental data showed that TMPK knockdown was sufficient to decrease dTTP level. In combination with a widely used chemotherapeutic agent, doxorubicin, it was found that silencing of TMPK significantly increased doxorubicin sensitivity dramatically in p53-proficient, -null HCT-116 cells. In contrast, silencing of thymidylate synthase (TS) that blocks the de novo pathway was incapable of sensitizing p53-null HCT-116 cells to doxorubicin-induced apoptosis because of the compensation by the salvage pathway. Thus, specifically blocking TMPK function and combined with low-dose doxorubicin treatment will be a very useful strategy for chemosensitization in killing cancer cells regardless of the p53 status.
Since the siRNA application is still limited by its delivery efficiency, it would be more feasible to use small molecule to block TMPK function. Since a specific inhibitor of human TMPK is still lacking, I started to search for specific hTMPK inhibitor. A new assay suitable for high-throughput screening of TMPK inhibitors was established and allowed the identification of a potential compound, named H9805, which inhibits TMPK with IC50 0.61 ± 0.02 μM. Furthermore, treatment with H9805 decreased cellular dTTP level in various cancer cell lines. Both MTS assay and colonies formation analysis showed that H9805 treatment enhanced doxorubicin-induced cell death. These data collectively suggest that H9805 compound is a potential lead compound for the use of chemosensitization.
In summary, this thesis work illuminates the importance of dTTP supply from de novo and salvage pathway in DNA repair process and provides new insights into targeting TMPK for chemosensization.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:12:44Z (GMT). No. of bitstreams: 1
ntu-99-D95442004-1.pdf: 2813114 bytes, checksum: 9022f22119080f02f305578cb568b6ce (MD5)
Previous issue date: 2010
en
dc.language.isoen
dc.subject酸激&#37238zh_TW
dc.subject胸&#33527zh_TW
dc.subject三磷酸zh_TW
dc.subject 胸&#33527zh_TW
dc.subject 小紅莓zh_TW
dc.subject 合成致死zh_TW
dc.subjectdTTPen
dc.subject synthetic lethalityen
dc.subject TMPK. doxorubicinen
dc.title抑制胸苷酸激酶及DNA拓樸異構酶II促進癌細胞死亡zh_TW
dc.titleCreating Synthetic Lethality in Cancer Cells
by Inhibiting Thymidylate Kinase and DNA Topoisomerase II
en
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳培哲,李芳仁,吳明賢,詹迺立,吳國瑞,李德章
dc.subject.keyword胸&#33527,三磷酸, 胸&#33527,酸激&#37238,, 小紅莓, 合成致死,zh_TW
dc.subject.keyworddTTP, TMPK. doxorubicin, synthetic lethality,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2010-01-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved