Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45289
標題: 以無網格區域微分積分法求解多階微分項及內插值
Evaluation of Multi-order Derivatives and Data Interpolation by Meshless Local Differential Quadrature Method
作者: Kang-Hsi Tseng
曾港錫
指導教授: 楊德良(Der-Liang Young)
關鍵字: 多階微分值,內插法,無網格,區域微分積分法,徑向基底函數,最小平方法,
multi-order derivatives,interpolation,meshless,local differential quadrature (LDQ),radial basis function (RBF),least squares method,
出版年 : 2010
學位: 碩士
摘要: 本研究提出一個改良徑向基底函數型態式區域微分積分法的計算流程並應用於求解兩項問題:微分值及內插值。首先,多階微分值在數值計算裡一直都是一項不易處理的問題。傳統上,在結構性網格做空間上的離散就可以求得多階微分值;但應用於非結構性網格時便非常難於求解。而本研究裡所提出的無網格微分值求解技術則不受限於網格的型態。再者,傳統方法通常不易求解多階微分值,例如FEM (using linear element)則受限於形狀函數(shape function)的影響;但本文採用的方法係以多階可微的徑向基底函數為權重函數,故可以有效地處理在計算多階微分值所面臨的難題。此外,本模式所採用的逼近方程式裡,第一種方法係利用調整形狀參數以符合所求問題的控制方程式,第二種方法則是以各方向、不同階數分別求解最適權重係數的概念,因此二者皆可精確地推算出各階微分值。另一方面,於任意撒點的計算域裡要求解內插值一直是項困難的問題。大多數的內插方法僅受限於正交網格上的應用;此外,這些方法皆未考慮控制方程式或斜率,但本研究所提之內插工具將分別考慮這兩項因素的方法做討論。本研究提出了一項易於操作且具高精確度的內插工具,而此項工具將滿足控制方程式或考慮斜率兩項方法結合最小平方法來穩定所求解的內插值。
為驗證本研究所提出的兩種方法於求解技術的精確度與穩定性,文中應用該二法於結構性及非結構性網格之上並與解析解和其它數值方法驗證比較。上述測試的結果顯示,本研究所發展的模式提供了使用者有效且精確的多階微分值及內插值之求解工具。
This thesis modified a local differential quadrature (LDQ) method with radial basis functions (RBFs) to deal with two kinds of problems: evaluating derivatives and interpolating data. First of all, it is difficult to obtain the differential values from numerical procedures in general. Most of the traditional derivative calculations can be only adopted to evaluate the differential values with the regular meshes. Moreover, the traditional numerical schemes are very restricted by the order of the shape function. The present technique is able to be applied to both of the structured and unstructured meshes due to a meshless numerical algorithm - RBF and LDQ method. In addition, the proposed model can be applied to estimate multi-order or mixed partial differential values because its test function (RBFs) is a multi-order differentiable function. Furthermore, the derivatives can be obtained quite accurately because the present scheme agrees with the governing equation for the first method and characteristic of weighting coefficients for the second method. Secondly, it is tough to interpolate the unknown data from the known scattered data. To be more accurately, most of the interpolation methods can be only applied to structured grid. Besides, most of them do not consider the governing equation and gradients. This investigation proposed a convenient and accurate tool to construct the unknown data from nearby relative knots. Present interpolation methods are operated under two conceptions: one is to consider the governing equations, and the other is to take account of the gradients. All of the results were tested with the structured and unstructured meshes and compared with exact solutions and other numerical techniques. Consequently, this study provides an effective algorithm to calculate the multi-order differential values and interpolate the new data accurately.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45289
全文授權: 有償授權
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
10.78 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved