請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45285完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張茂山(Mau-Sun Chang) | |
| dc.contributor.author | Po-Chen Chu | en |
| dc.contributor.author | 朱伯振 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:12:25Z | - |
| dc.date.available | 2011-01-01 | |
| dc.date.copyright | 2010-02-04 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-01-25 | |
| dc.identifier.citation | 1. Malumbres, M., Barbacid, M. Mammalian cyclin-dependent kinases. Trend. Biochem. Sci. 2005; 30:630-641.
2. Classon, M., Harlow, E. The retinoblastoma tumor suppressor in development and cancer. Nat. Rev. Cancer 2002; 2:910-917. 3. Harbour, J.W., Dean, D.C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 2000; 14:2393-2409. 4. Attwooll, C., Lazzerini, D.E., Helin, K. The E2F family: specific functions and overlapping interests. EMBO J. 2004; 23:4709-4716. 5. Cobrinik, D. Pocket proteins and cell cycle control. Oncogene 2005; 24:2796-2809. 6. Dimova, D.K., Dyson, N.J. The E2F transcriptional network: old acquaintances with new faces. Oncogene 2005; 24:2810-2826. 7. Trimarchi, J.M., Lees, J.A. Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 2002; 3:11-20. 8. Farkas, T., Hansen, K., Holm, K., Lukas, J., Bartek, J. Distinct phosphorylation events regulate p130- and p107- mediated repression of E2F4. J. Biol. Chem. 2002; 277:26741-26752. 9. Stevaux, O., Dyson, N.J. A revised picture of the E2F transcriptional network and RB function. Curr. Opin. Cell Biol. 2002; 14:684-691. 10. Broach, J.R., Li, Y.Y., Feldman, J., Jayaram, M., Abraham, J., Nasmyth, K.A., Hicks, J.B. Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harb. Symp. Quant. Biol. 1983; 47:1165-1173. 11. Neuwald, A.F., Aravind, L., Spouge, J.L., Koonin, E.V. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999; 9:27-43. 12. Schwacha, A., Bell, S.P. Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol. Cell 2001; 8:1093-1104. 13. Maiorano, D., Lemaitre, J.M., Mechali, M. Stepwise regulated chromatin assembly of MCM2-7 proteins. J. Biol. Chem. 2000; 275:8426-8431. 14. Masai, H., Sato, N., Takeda, T. Arai, K. CDC7 kinase complex as a molecular switch for DNA replication. Front. Biosci. 1999; 4:D834-D840. 15. Uchiyama, M., Griffiths, D., Arai, K., Masai, H. Essential role of Sna41/Cdc45 in loading of DNA polymerase alpha onto minichromosome maintenance proteins in fission yeast. J. Biol. Chem. 2001; 276:26189-26196. 16. Diffley, J.F., Labib, K. The chromosome replication cycle. J. Cell Sci. 2002; 115:869-872. 17. Jónsson, Z.O., Hübscher, U. Proliferating cell nuclear antigen: more than a clamp for DNA polymerases. Bioessays 1997; 19:967-975. 18. Mimura, S., Masuda, T., Matsui, T., Takisawa, H. Central role for cdc45 in establishing an initiation complex of DNA replication in Xenopus egg extracts. Gene Cells 2000; 5:439-452. 19. Miyata, T., Suzuki, H., Oyama, T., Mayanagi, K., Ishino, Y., Morikawa, K. Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Proc. Natl. Acad. Sci. USA 2005; 102:13795-13800. 20. Zhou, B.B., Elledge, S.J. The DNA damage response: putting checkpoints in perspective. Nature 2000; 408:433-439. 21. Nyberg, K.A., Michelson, R.J., Putnam, C.W., Weinert, T.A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 2002; 36:617-656. 22. Hartwell, L.H., Weinert, T.A. Checkpoints: controls that ensure the order of cell cycle events. Science 1989; 246:629-634. 23. Sancar, A., Lindsey-Boltz, L.A., Unsal-Kacmaz, K., Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 2004; 73:39-85. 24. Harrison, J.C., Haber, J.E. Surviving the breakup: The DNA damage checkpoint. Annu. Rev. Genet. 2006; 40:209-235. 25. Harper, J.W., Elledge, S.J. The DNA damage response: Ten Years After. Mol. Cell 2007; 28:739-745. 26. Lavin, M.F., Shiloh, Y. The genetic defect in ataxia telangiectasia. Annu. Rev. Immunol. 1997; 15:177 202. 27. Osborn, A.J., Elledge, S.J., Zou, L. Checking on the fork: The DNA replication stress response pathway. Trends Cell Biol. 2002; 12:509-516. 28. Kumagai, A., Dunphy, W.G. How cells activate ATR. Cell Cycle 2006; 5:1265 1268. 29. Brown, E.J., Baltimore, D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev. 2003; 17:615-628. 30. Bakkenist, C.J., Kastan, M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimmer dissociation. Nature 2003; 421:499-506. 31. Goodarzi, A.A., Jonnalagadda, J.C., Douglas, P., Young, D., Ye, R., Moorhead, G.B., Leesmiller, S.P., Khanna, K.K. Autophosphorylation of ataxia telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J. 2004; 23:4451 4461. 32. Sun, Y., Jiang, X., Chen, S., Fernandes, N., Price, B.D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. USA 2005; 102:13182 13187. 33. Cortez, D., Guntuku, S., Qin, J., Elledge, S.J. ATR and ATRIP: Partners in checkpoint signaling. Science 2001; 294:1713-1716. 34. Kumagai, A., Lee, J., Yoo, H.Y., Dunphy, W.G. TopBP1 activates the ATR-ATRIP complex. Cell 2006; 124:943-955. 35. Mailand, N., Falck, J., Lukas, C., Syljuasen, R.G., Welcker, M., Bartek, J., Lukas, J. Rapid destruction of human Cdc25A in response to DNA damage. Science 2000; 288:1425-1429. 36. Bartek, J., Lukas, J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr. Opin. Cell Biol. 2001; 13:738-747. 37. Kitagawa, R., Bakkenist, C.J., McKinnon, P.J., Kastan, M.B. Phosphorylation of SMC1 is a critical downstream event in the ATM NBS1 BRCA1 pathway. Genes Dev. 2004; 18:1423 1438. 38. Kastan, M.B., Bartek, J. Cell-cycle checkpoints and cancer. Nature 2004; 432:316-323. 39. Bulavin, D.V., Higashimoto, Y., Popoff, I.J., Gaarde, W.A., Basrur, V., Potapova, O., Appella, E., Fornace, A.J. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 2001; 411:102-107. 40. Chang, M.S., Chang, C.L., Huang, C.J., Yang, Y.C. p29, a novel GCIP-interacting protein, localizes in the nucleus. Biochem. Biophys. Res. Commun. 2000; 279:732-737. 41. Xia, C., Bao, Z., Tabassam, F., Ma, W., Qiu, M., Hua, S., Liu, M. GCIP, a novel human grap2 and cyclin D interacting protein, regulates E2F-mediated transcriptional activity. J. Biol. Chem. 2000; 275:20942-20948. 42. Ma, W., Stafford, L.J., Li, D., Luo, J., Li, X., Ning, G., Liu, M. GCIP ⁄ CCNDBP1, a helix-loop-helix protein, suppresses tumorigenesis. J. Cell. Biochem. 2007; 100:1376-1386. 43. Russell, C.S., Ben-Yehuda, S., Dix, I., Kupiec, M., Beggs, J.D. Functional analyses of interacting factors involved in both pre-mRNA splicing and cell cycle progression in Saccharomyces cerevisiae. RNA 2000; 6:1565-1572. 44. Dahan, O., Kupiec, M. Mutations in genes of Saccharomyces cerevisiae encoding pre-mRNA splicing factors cause cell cycle arrest through activation of the spindle checkpoint. Nucleic Acids Res. 2002; 30:4361-4370. 45. Maga, G.., Hubscher, U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell Sci. 2003; 116:3051-3060. 46. Forsburg, S.L. Eukaryotic MCM proteins: beyond replication initiation. Microbiol. Mol. Biol. Rev. 2004; 68:109-131. 47. Nghiem, P., Park, P.K., Kim, Y., Vaziri, C., Schreiber, S.L. ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc. Natl. Acad. Sci. USA 2001; 98:9092-9097. 48. Nghiem, P., Park, P.K., Kim, Y., Desai, B.N., Schreiber, S.L. ATR is not required for p53 activation but synergizes with p53 in the replication checkpoint. J. Biol. Chem. 2002; 277:4428-4434. 49. Matsuoka, S., Rotman, G., Ogawa, A., Shiloh, Y., Tamai, K., Elledge, S.J. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. USA 2000; 97:10389-10394. 50. Oakley, G.G., Loberg, L.I., Yao, J., Risinger, M.A., Yunker, R.L., Zernik-Kobak, M., Khanna, K.K., Lavin, M.F., Carty, M.P., Dixon, K. UV-induced hyperphosphorylation of replication protein A depends on DNA replication and expression of ATM protein. Mol. Biol. Cell 2001; 12:1199-1213. 51. Stiff, T., Walker, S.A., Cerosaletti, K., Goodarzi, A.A., Petermann, E. Concannon, P., O’Driscoll, M., Jeggo, P.A. ATR dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J. 2006; 25:5775 5782. 52. Gatei, M., Sloper, K., Sorensen, C., Syljuäsen, R., Falck, J., Hobson, K., Savage, K., Lukas, J., Zhou, B., Bartek, J. Khanna, K.K. ATM and NBS1 dependent phosphorylation of CHK1 on S317 in response to IR. J. Biol. Chem. 2003; 278:14806-14811. 53. Sørensen, C.S., Syljuåsen, R.G., Falck, J., Schroeder, T., Rönnstrand, L., Khanna, K.K., Zhou, B., Bartek, J. Lukas, J. Chk1 regulates the S-phase checkpoint by coupling the physiological turnover and ionizing radiation induced accelerated proteolysis of Cdc25A. Cancer Cell 2003; 3:247-258. 54. Eastman, A. Cell cycle checkpoints and their impact on anticancer therapeutic strategies. J. Cell Biochem. 2004; 91:223-231. 55. Bell, S.P., Dutta, A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 2002; 71:333-374. 56. Mendez, J., Stillman, B. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays 2003; 25:1158-1167. 57. Rodier, G., Makris, C., Coulombe, P., Scime, A., Nakayama, K., Meloche, S. p107 inhibits G1 to S phase progression by down-regulating expression of the F-box protein Skp2. J. Cell Biol. 2005; 168:55-66. 58. Takahashi, Y., Rayman, J.B., Dynlacht, B.D. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 2000; 14:804-816. 59. Ishida, S., Huang, E., Zuzan, H. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell Biol. 2001; 21:4684-4699. 60. Ren, B., Cam, H., Takashashi, Y., Volkert, T., Terragni, J., Young, R.A., Dynlacht, B.D. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev. 2002; 16:245-256. 61. Kim, Y.C., Gerlitz, G., Furusawa, T., Catez, F., Nussenzweig, A., Oh, K.S., Kraemer, K.H., Shiloh, Y., Bustin, M. Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat. Cell Biol. 2009; 11:92-96. 62. Trieschmann, L., Alfonso, P.J., Crippa, M.P., Wolffe, A.P., Bustin, M. Incorporation of chromosomal proteins HMG-14/HMG-17 into nascent nucleosomes induces an extended chromatin conformation and enhances the utilization of active transcription complexes. EMBO J. 1995; 14:1478-1489. 63. Paranjape, S.M., Krumm, A., Kadonaga, J.T. HMG17 is a chromatin-specific transcriptional coactivator that increases the efficiency of transcription initiation. Genes Dev. 1995; 9:1978-1991. 64. Vestner, B., Bustin, M., Gruss, C. Stimulation of replication efficiency of a chromatin template by chromosomal protein HMG-17. J. Biol. Chem. 1998; 273:9409-9414. 65. Briger, Y., Catez, F., Furusawa, T., Lim, J.H., Prymakowska-Bosak, M., West, K.L., Postnikov, Y.V., Haines, D.C., Bustin, M. Increased tumorigenicity and sensitivity to ionizing radiation upon loss of chromosomal protein HMGN1. Cancer Res. 2005; 65:6711-6718. 66. Moggs, J.G., Almouzni, G. Chromatin rearrangements during nucleotide excision repair. Biochimie 1999; 81:45-52. 67. Peterson, C.L., Cote, J. Cellular machineries for chromosomal DNA repair. Genes Dev. 2004; 18:602-616. 68. Gong, F., Kwon, Y.H., Smerdon, M.J. Nucleotide excision repair in chromatin and the right of entry. DNA Repair 2005; 4:884-896. 69. Reeves, R., Adair, J.E. Role of high mobility group (HMG) chromatin proteins in DNA repair. DNA Repair 2005; 4:926-938. 70. Soutoglou, E., Misteli, T. Activation of the cellular DNA damage response in the absence of DNA lesions. Science 2008; 320:1507-1510. 71. Méndez, J., Stillman, B. Chromatin association of human origin recognition complex, Cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of pre-replication complexes in late mitosis. Mol. Cell. Biol. 2000; 20:8602-8612. 72. Kang, H.L., Vieira, K., Bungert, J. Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein-DNA interactions in vivo. Nucleic Acids Res. 2002; 30:e44-e48. 73. Fanconi, G. Familiaere infantile perniziosaartige Anaemie (pernizioeses Blutbild and konstitution). Jahrbuch Kinderheild 1927; 117:257-280. 74. Joenje, H., Patel, K.J. The emerging genetic and molecular basis of Fanconi anaemia. Nat. Rev. Genet. 2001; 2:446-459. 75. Kennedy, R.D., D’Andrea, A.D. The Fanconi anemia/BRCA pathway: new faces in the crowd. Genes Dev. 2005; 19:2925-2940. 76. Wang, W. Emergence of a DNA-damage response network consisting of Fanconi anemia and BRCA proteins. Nat. Rev. Genet. 2007; 8:735-748. 77. Garcia-Higuera, I., Taniguchi, T., Ganesan, S., Meyn, M.S., Timmers, C., Hejna, J., Grompe, M., D’Andrea, A.D. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 2001; 7:249-262. 78. Gregory, R.C., Taniguchi, T., D’Andrea, A.D. Regulation of the Fanconi anemia pathway by monoubiquitination. Semin. Cancer Biol. 2003; 13:77-82. 79. Dunn, J., Potter, M., Rees, A., Runger, T.M. Activation of the Fanconi anemia/BRCA pathway and recombination repair in the cellular response to solar UV light. Cancer Res. 2006; 66:11140-11167. 80. Houghtaling, S., Timmers, C., Noll, M., Finegold, M.J., Jones, S.N., Meyn, M.S., Grompe, M. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes. Dev. 2003; 17:2021-2235. 81. Niedzwiedz, W., Mosedale, G., Johnson, M., Ong, C.Y., Pace, P., Patel, K.J. 2004. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 2004; 15:607-620. 82. Ciccia, A., Ling, C., Coulthard, R., Yan, Z., Xue, Y., Meetei, A.R., Laghmani, E.H., Joenje, H., McDonald, N., de Winter, J.P., Wang, W., West, S.C. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol. Cell 2007; 25:331-343. 83. Ling, C., Ishiai, M., Ali, A.M., Medhurst, A.L., Neveling, K., Kalb, R., Yan, Z., Xue, Y., Oostra, A.B., Auerbach, A.D., Hoatlin, M.E., Schindler, D., Joenje, H., de Winter, J.P., Takata, M., Meetei, A.R., Wang, W. FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO J. 2007; 26:2104-2114. 84. Meetei, A.R., de Winter, J.P., Medhurst, A.L., Wallisch, M., Waisfisz, Q., van de Vrugt, H.J., Oostra, A.B., Yan, Z., Ling, C., Bishop, C.E., Hoatlin, M.E., Joenje, H., Wang, W. A novel ubiquitin ligase is deficient in Fanconi anemia. Nat. Genet. 2003; 35:165-170. 85. Meetei, A.R., Levitus, M., Xue, Y., Medhurst, A.L., Zwaan, M., Ling, C., Rooimans, M.A., Bier, P., Hoatlin, M., Pals, G., de Winter, J.P., Wang, W., Joenje, H. X-linked inheritance of Fanconi anemia complementation group B. Nat. Genet. 2004; 36:1219-1224. 86. Meetei, A.R., Medhurst, A.L., Ling, C., Xue, Y., Singh, T.R., Bier, P., Steltenpool, J., Stone, S., Dokal, I., Mathew, C.G., Hoatlin, M., Joenje, H., de Winter, J.P., Wang, W. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat. Genet. 2005; 37:958-963. 87. Smogorzewska, A., Matsuoka, S., Vinciquerra, P., McDonald, E.R. 3rd., Hurov, K.E., Luo, J., Ballif, B.A., Gygi, S.P., Hofmann, K., D’Andrea, A., Elledge, S.J. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 2007; 129:289-301. 88. Sims, A.E., Spiteri, E., Sims, R.J. 3rd., Arita, A.G., Lach, F.P., Landers, T., Wurm, M., Freund, M., Neveling, K., Hanenberg, H., Auerbach, A.D., Huang, T.T. FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 2007; 14:564-567. 89. Taniguchi, T., Garcia-Higuera, I., Andreassen, P.R., Gregory, R.C., Grompe, M., D’Andrea, A.D. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 2002; 100: 2414-2420. 90. Bogliolo, M., Lyakhovich, A., Callen, E., Castella, M., Cappelli, E., Ramirez, M.J., Creus, A., Marcos, R., Kalb, R., Neveling, K., Schindler, D., Surralles, J. Histone H2AX and Fanconi anemia FANCD2 function in the same pathway to maintain chromosome stability. EMBO J. 2007; 26:1340-1351. 91. Howlett, N.G., Taniguchi, T., Olson, S., Cox, B., Waisfisz, Q., De Die-Smulders, C., Persky, N., Grompe, M., Joenje, H., Pals, G., Ikeda, H., Fox, E.A., D’Andrea, A.D. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 2002; 297:606-609. 92. Levitus, M., Waisfisz, Q., Godthelp, B.C., de Vries, Y., Hussain, S., Wiegant, W.W., Elghalbzouri-Maghrani, E., Steltenpool, J., Rooimans, M.A., Pals, G., Arwert, F., Mathew, C.G., Zdzienicka, M.Z., Hiom, K., de Winter, J.P., Joenje, H. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nat. Genet. 2005; 37:934-935. 93. Levran, O., Attwooll, C., Henry, R.T., Milton, K.L., Neveling, K., Rio, P., Batish, S.D., Reinhard, K., Velleuer, E., Barral, S., Ott, J., Petrini, J., Schindler, D., Hanenberg, H., Auerbach, A.D. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat. Genet. 2005; 37:931-933. 94. Litman, R., Peng, M., Jin, Z., Zhang, F., Zhang, J., Powell, S., Andreassen, P.R., Cantor, S.B. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 2005; 8:255-265. 95. Xia, B., Dorsman, J.C., Ameziane, N., de Vries, Y., Rooimans, M.A., Sheng, Q., Pals, Q., Errami, A., Gluckman, E., Llera, J., Wang, W., Livingston, D.M., Joenje, H., de Winter, J.P. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat. Genet. 2007; 39:159-161. 96. Reid, S., Schindler, D., Hanenberg, H., Barker, K., Hanks, S., Kalb, R., Neveling, K., Kelly, P., Seal, S., Freund, M., Wurm, M., Batish, S.D., Lach, F.P., Yetgin, S., Neitael, H., Ariffin, H., Tischkowitz, M., Mathew, C.G., Auerbach, A.D., Rahman, N. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet. 2007; 39:162-164. 97. Niedernhofer, L.J., Lalai, A.S., Hoeijmakers, J.H. Fanconi anemia (cross)linked to DNA repair. Cell 2005; 123:1191-1198. 98. Kuraoka, I., Kobertz, W.R., Ariza, R.R., Biggerstaff, M., Essigmann, J.M., Wood, R.D. Repair of an interstrand DNA cross-link initiated by ERCC1–XPF repair/recombination nuclease. J. Biol. Chem. 2000; 275:26632-26636. 99. Hanada, K., Budzowska, M., Modesti, M., Maas, A., Wyman, C., Essers, J., Kanaar, R. The structure-specific endonuclease MUS81–EME1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J. 2006; 25:4921-4932. 100. Andreassen, P.R., D’Andrea, A.D., Taniquchi, T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes & Dev. 2004; 18:1958-1963. 101. Ishiai, M., Kitao, H., Smogorzewska, A., Tomida, J., Kinomura, A., Uchida, E., Saberi, A., Kinoshita, E., Kinoshita-Kikuta, E., Koike, T., Tashiro, S., Elledge, S.J., Takata, M. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 2008; 15:1138-1146. 102. Pichierri, P., and Rosselli, F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J. 2004; 23:1178-87. 103. Wang, X., Kennedy, R.D., Ray, K., Stuckert, P., Ellenberger, T., D’Andrea, A.D. Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol. Cell Biol. 2007; 27:3098-3108. 104. Gönczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S., Copley, R.R., Duperon, J., Oegema, J., Brehm, M., Cassin, E., Hannak, E., Kirkham, M., Pichler, S., Flohrs, K., Goessen, A., Leidel, S., Alleaume, A.M., Martin, C., Özlü, N., Bork, P., Hyman, A.A. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 2000; 408:331-336. 105. Chen, J., Archer, T.K. Regulating SWI/SNF subunit levels via protein-protein interactions and proteasomal degradation: BAF155 and BAF170 limit expression of BAF57. Mol. Cell Biol. 2005; 25:9016-9027. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45285 | - |
| dc.description.abstract | 人類p29蛋白質是一個與細胞週期調控蛋白質GCIP有作用,但功能仍舊未知的細胞核蛋白質。本論文主要是探討這一個新發現,且功能未知的細胞核蛋白質p29的細胞功能及所扮演的角色。從我們的研究中發現,p29蛋白屬於可與染色質(chromatin)結合的蛋白質,並可與MCM3蛋白質作用,並且在細胞週期的DNA合成期(S phase)時會與DNA複製的複合體聚集。為了進一步探究p29蛋白的細胞功能,我們利用siRNAs抑制p29蛋白的表現後,p107及p21兩個蛋白質表現增加,但卻也發現MCM3及DNA合成酶α (DNA polymerase α) 的表現量下降,因而導致細胞的DNA合成降低。若進一步使用紫外線(UV)照射p29蛋白被抑制的HeLa細胞時,細胞會因缺少p29蛋白而使檢查點(checkpoint)蛋白質Chk1的磷酸化及活性降低,而無法阻擋細胞進入有絲分裂(mitosis),因此造成所謂PCC (premature chromatin condensation)而死亡。此外,利用紫外線(UV)照射缺少p29蛋白的細胞時,我們發現細胞因缺少p29蛋白的表現而影響了與DNA損害修復有關的ATM蛋白質在絲氨酸1981的磷酸化,也因此可能影響細胞DNA損害修復的活性。除了影響DNA損害檢查點的訊息傳遞外,p29蛋白被抑制時也造成FANCI及FANCD2蛋白質的monoubiquitination現象減少,因而增加細胞對DNA crosslinking藥物的敏感性。
為了進一步研究p29蛋白質的生理功能,我們也分別利用U2OS細胞及缺乏FANCG蛋白的細胞 (FA-G cell),建立p29蛋白持續表現的細胞株。在p29蛋白持續表現的U2OS細胞株中,我們發現結合在染色質上的Mre11-Rad50-NBS1及ATRIP蛋白質皆有增多的情形,而且伴隨著檢查點蛋白質Chk1及Chk2的磷酸化明顯增加,代表提供細胞修復DNA損害及保護細胞染色體的能力大幅增加。另一方面,在p29蛋白持續表現的FA-G細胞株中,因p29蛋白的增加促使結合在染色質上的FANCL蛋白質增加,使細胞對FANCI及FANCD2蛋白質進行monoubiquitination的能力得以回復,因而降低對DNA crosslinking藥物的敏感性。但在缺乏FANCD2蛋白質的FA-D2細胞中,就算p29蛋白質持續表現,仍無法降低FA-D2細胞對DNA crosslinking藥物的敏感性,因此推測p29蛋白可能具有調控FANCI及FANCD2蛋白質進行monoubiquitination的功能。 我們也進一步從mp29基因轉殖鼠對紫外線所引發的皮膚腫瘤比非轉殖鼠有較低的發生率結果看來,說明p29蛋白在細胞中持續表現時,可以保護並修復細胞的DNA免於傷害。綜合我們的研究結果,證明了p29蛋白除了在DNA複製時的重要性外,也發現p29蛋白具有影響DNA受損時所引發訊息傳遞的功能。 | zh_TW |
| dc.description.abstract | Human p29 protein was initially identified as a GCIP (Grab2 cyclin D interacting protein)-interaction protein and its function is largely undetermined. In this study, we found that p29 associated with chromatin, interacted with MCM3, and localized to DNA replication foci in the S phase. Silencing of p29 by siRNAs (small interfering RNAs) reduced DNA synthesis accompanied with the decreased expression of MCM3 and DNA polymerase α. By contrast, an increased expression of p107, a member of Rb (retinoblastoma) family, and of cyclin-dependent kinase inhibitor p21 was detected after p29 knockdown. Lethal events consisting of premature chromatin condensation with a reduced Chk1 phosphorylation were also observed in p29-depleted cells in response to UV irradiation. Intriguingly, the phosphorylation of ATM (ataxia telangectasia-mutated) kinase at S1981 was suppressed in p29-depleted HeLa cells with UV irradiation, but not in hydroxyurea- and ionizing radiation-treated cells. In addition to defects in checkpoint signaling, depletion of p29 also compromises the monoubiquitination of FANCI and FANCD2 (FA ID complex) in Fanconi anemia (FA) pathway, which sensitize cells to DNA crosslinking drug treatment.
To further characterize the function of p29, U2OS and Fanconi anemia complementation group G (FA-G) cells with constitutive p29 expression have been established. We found the increased phosphorylation levels of Chk1 and Chk2, which were accompanied by elevated amounts of chromatin-associated Mre11-Ra50-NBS1 and ATRIP in p29 stably expressing cells. The increased checkpoint activity preserves the genetic integrity and protects p29 stably expressing cells from DNA damage and apoptosis. Monoubiquitination of FA ID complex was restored with increased chromatin-associated FANCL in p29 stably expressing FA-G cells. However, the stable expression of p29 in Fanconi anemia complementation group D2 (FA-D2) cells did not complement the sensitivity to DNA crosslinking drug treatment, suggesting that p29 may play a role upstream of FA ID complex. Furthermore, lower tumor incidence was observed in mp29 transgenic mice after UV-irradiation, suggesting that mp29 transgene protected these mice from UV irradiation and supporting the results in p29 stably expressing cells. These results provide evidence that p29 not only participates in the replication reaction but also in the DNA damage response. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:12:25Z (GMT). No. of bitstreams: 1 ntu-99-D94b46001-1.pdf: 6530240 bytes, checksum: ba44a280e53eaf2d16eb9dc7a8da9da5 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Abstract (Chinese)…………………………………………Ⅰ
Abstract (English)…………………………………………Ⅲ Contents………………………………………………………Ⅴ List of Abbreviations………………………………………Ⅹ Chapter Ⅰ Involvement of p29 in DNA replication and DNA damage checkpoint response 1. Introduction…………………………………………………1 1. 1 Cell cycle G1-to-S transition…………………1 1. 2 Cell cycle S phase - Eukaryotic DNA replication…2 1. 2. 1 Assembly of Pre-RC at replication origin…………2 1. 2. 2 Origin Activation and DNA Replication……………4 1. 3 DNA damage responses……………………………………5 1. 3. 1 Activation of ATM pathway……………………………6 1. 3. 2 Activation of ATR pathway……………………………7 1. 4 DNA damage checkpoints…………………………………8 1. 4. 1 G1/S damage checkpoint………………………………8 1. 4. 2 S phase damage checkpoint……………………………8 1. 4. 4 G2/M damage checkpoint………………………………9 2. Specific aims……………………………………………………10 3. Results……………………………………………………………11 3. 1 Association of p29 with chromatin…………………11 3. 2 p29 localizes to replication foci and interacts with MCM3………………………12 3. 3 Silencing of p29 inhibits DNA replication……………………14 3. 4 UV-induced Chk1 phosphorylations were impaired in p29-depleted cells……………15 3. 5 Silencing of p29 inhibits ATM phosphorylation after UV irradiation……17 3. 6 p29 stably expressing cells were resistant to UV irradiation………………………18 3. 7 p29 affected phosphorylation levels of Chk1 and Chk2………………………………19 3. 8 Resistance to UV irradiation in mp29 transgenic mice…………………………………21 4. Discussion………………………………………………………23 4. 1 Silencing of p29 negatively regulates DNA replication…………………23 4. 2 Involvement of p29 in UV-induced damage response……………………………25 5. Materials and Methods…………………………………………27 p29 monoclonal antibody…………………………………………27 Cell Culture………………………………………………………27 Cell synchronization……………………………………………27 Antibodies…………………………………………………………28 Whole cell extracts, cytosolic extracts, nuclear extracts, and chromatin-enriched fractions preparation………………28 Chromatin immunoprecipitation…………………………………29 In vitro protein-protein interaction (affinity pull-down) and Western blotting……………………………………………30 Immunofluorescence staining……………………………………31 Small-interfering RNA (siRNA) transfection…………………31 RT-PCR…………………………………………………………………32 Lentiviral expression of p29……………………………………32 Clonogenic survival assay………………………………………33 Cell cycle and apoptosis analysis……………………………33 Comet assay…………………………………………………………34 Mitotic spreads……………………………………………………34 Generation of mp29 transgenic mice and UV irradiation…35 Chapter Ⅱ Involvement of p29 in Fanconi anemia pathway 1. Introduction………………………………………………………36 1. 1 Fanconi anemia (FA) pathway…………………………36 1. 2 The Fanconi anemia genes……………………………37 1. 3 Activation of Fanconi anemia (FA) pathway………38 2. Specific aims……………………………………………………39 3. Results……………………………………………………………40 3. 1 p29 interacts with FA complex and affects the monoubiquitination of FA ID complex…………………………40 3. 2 The restoration of the monoubiquitination of FA ID complex by stable expression of p29 in FA-G cells………………………………41 4. Discussion………………………………………………………44 5. Materials and Methods………………………………………46 Cell Culture………………………………………………………46 Antibodies…………………………………………………………46 Immunofluorescence staining……………………………………46 Chromatin immunoprecipitation…………………………………47 Small-interfering RNA (siRNA) transfection………………47 Lentiviral expression of p29…………………………………48 Mitotic spreads……………………………………………………48 MTT Cell Viability Assay…………………………………………49 Comet assay…………………………………………………………49 Chapter Ⅲ Conclusions…………………………………………………………51 Figures and Legends………………………………………………53 Figure 1. Association of p29 with chromatin………………53 Figure 2. p29 localizes to replication sites during S-phase progression…………………56 Figure 3. Silencing of p29 inhibits DNA replication……59 Figure 4. UV-induced chk1 phosphorylation was impaired in p29-silenced cells………………………………………………62 Figure 5. Silencing of p29 inhibits ATM phosphorylation afterUV irradiation………………………………………………65 Figure 6. p29 stably expressing cells were resistant to UV irradiation……………………………67 Figure 7. p29 affected phosphorylation levels of Chk1 and Chk2…………………………………70 Figure 8. ATM and/or ATR dependent activation of Chk1 and Chk2 in p29 stably expressing U2OS cells…………………………………74 Figure 9. Resistance to UV irradiation in mp29 transgenic mice……………………………………76 Figure 10. A schematic model of the effects of overexpressed p29 in the DNA damage checkpoint pathway…79 Figure 11. p29 interacts with FA complex and affects the monoubiquitination of FA ID complex…………………………80 Figure 12. The constitutive expression of p29 restores the monoubiquitination of FA ID complex in FA-G cells………82 Figure 13. Stable expression of p29 can not complement the MMC sensitivity in FA-D2 cells………………………………86 Figure 14. p29 did not regulate the FA pathway in cells with normal and intact FA core components…………………87 Figure 15. Model of the proposed functional role for p29 in DNA replication and DNA damage response………………88 References…………………………………………………………89 | |
| dc.language.iso | en | |
| dc.subject | DNA損害檢查點 | zh_TW |
| dc.subject | DNA複製 | zh_TW |
| dc.subject | Chk1 | en |
| dc.subject | DNA polymerase α | en |
| dc.subject | Chk2 | en |
| dc.subject | MCM3 | en |
| dc.subject | FANCG2 | en |
| dc.subject | FANCI | en |
| dc.title | 核蛋白p29參與DNA複製及損害反應之探討 | zh_TW |
| dc.title | Involvement of p29 in DNA replication and DNA damage response | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張震東(Geen-Dong Chang),賴明德(Ming-Derg Lai),黃銓珍(Chang-Jen Huang),李心予(Hsin-Yu Lee),陳宏文(Hung-Wen Chen) | |
| dc.subject.keyword | DNA複製,DNA損害檢查點, | zh_TW |
| dc.subject.keyword | MCM3,DNA polymerase α,Chk1,Chk2,FANCI,FANCG2, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-01-25 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 6.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
