請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45283完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳基旺 | |
| dc.contributor.author | Hsueh-Yun Lee | en |
| dc.contributor.author | 李學耘 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:12:19Z | - |
| dc.date.available | 2020-01-25 | |
| dc.date.copyright | 2010-03-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-01-25 | |
| dc.identifier.citation | Information retrieved from the Internet Homepages of the Department of Health, Taiwan, R. O. C (http://www.doh.gov.tw).
Nasmyth, K. Viewpoint: putting the cell cycle in order. Science 1996, 274, 1643-1645. Hartwell, L. H.; Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science 1989, 246, 629-634. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 1996, 274, 1664-1672. Paulovich, A. G.; Toczyski, D. P.; Hartwell, L. H. When checkpoints fail. Cell 1997, 88, 315-321. Pardee, A. B. A restriction point for control of normal animal cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 1286-1290. Webster, K. R. Therapeutic potential of targeting the cell cycle. Chem. Res. Toxicol. 2000, 13, 940-943. Hung, D. T.; Jamison, T. F.; Schreiber, S. L. Understanding and controlling the cell cycle with natural products. Chem. Biol. 1996, 3, 623-639. Xia, Z.; Tan, M. M.; Wong, W. W. L.; Dimitroulakos, J.; Minden, M. D.; Penn, L.Z. Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 2001, 15, 1398–1407. Rüegg, U. T.; Burgess, G. M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol. Sci. 1989, 10, 218-220. Chae, H. J.; Kang, J. S.; Byun, J. O.; Han, K. S.; Kim, D. U.; Oh, S. M.; Kim, H. M.; Chae, S. W.; Kim, H. R. Molecular mechanism of staurosporine-induced apoptosis in osteoblasts. Pharmacol. Res. 2000, 42, 373–381. Davis, H. J. L.; Davis, T. E. Doxorubicin and adriamycin in cancer treatment: an analysis of the roles and limitation. Cancer Treat. Rep. 1979, 63, 809-815. Momparler R. L.; Karon, M.; Siegel, S. E.; Avila, F. Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res. 1976, 36, 2891–2895. Yoshino, H.; Ueda, N.; Niijima, J.; Sugumi, H.; Kotake, Y.; Koyanagi, N.; Yoshimatsu, K.; Asada, M.; Watanabe, T.; Nagaau, T.; Tsukahara, K.; Iijima, A.; Kitoh, K. Novel sulfonamides as potential, systemically active antitumor agents. J. Med. Chem. 1992, 35, 2497-2500. Yoshimatsu, K.; Yamaguchi, A.; Yoshino, H.; Koyanagi, N.; Kitoh, K. Mechanism of Action of E7010, an orally active sulfonamide antitumor agent: inhibition of mitosis by binding to the colchicine site of tubulin. Cancer Res. 1997, 57, 3208-3213. Maren, T. H. Relations between structure and biological activity of sulfonamides. Annu. Rev. Pharmacol. Toxicol. 1976, 16, 309-327. Abel, G.; Connors, T. A.; Ross, W. C. J.; Nguyen-Hoang-Nam; Hoellinger, H.; Pichat, L. The selective concentration of sulphadiazine and related compounds in malignant tissue. Eur. J. Cancer 1973, 9, 49-54. Chern, J. W.; Tao, P. L.; Yen, M. H.; Lu, G. Y.; Shiau, C. Y.; Lai, Y. J.; Chien, S. L.; Chan, C. H. Studies on quinazolines. 5. 2,3-dihydroimidazo[ l,2-c]quinazoline derivatives: a novel class of potent and selective αl-adrenoceptor antagonists and anti hypertensive agents. J. Med. Chem. 1993, 36, 2196-2207. Chen, C. S; Lai, S. Y.; Hsu, P. S..; Tsai, C. Y.; Fang, C. W.; Su, M. J.; Cheng, F. C.; Kao, C. L.; Chern, J. W. Design, synthesis and biological evaluation of heterocycle-conjugated styrene derivatives as protein tyrosine kinase inhibitors and free radical scavengers. Chin. Pharm. J. 2002, 54, 353-374. Chakraborty, D. P.; Barman, B. K.; Bose, P. K. On the structure of girinimbine, a pyranocarbazole derivative isolated from Murraya koenigii Spreng. Sci. Cult. (India) 1964, 30, 445. Chakraborty, D. P.; Barman, B. K.; Bose, P. K. On the constitution of murrayanine, a carbazole derivative isolated from Murraya koenigii Spreng. Tetrahedron 1965, 21, 681-685. Kondo, S.; Katayama, M.; Marumo, S. Arbazomycinal and 6-methoxycarbazomycinal as aerial mycelium formation-inhibitory substances of streptoverticillium species. J. Antibiotics 1986, 39, 727-730. Te Paske, M. R.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. The structure of tubingensin B: a cytotoxic carbabole alkaloid from the sclerotia of Aspergillus Tubingensis. Tetrahedron Lett. 1989, 30, 5965-5968. Te Paske, M. R.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. Tubingensin A: an antiviral carbazole alkaloid from the sclerotia of Aspergillus tubingensis. J. Org. Chem. 1989, 54, 4743-4746. Nakahara, K.; Trakoontivakorn, G.; Alzoreky, N. S.; Ono, H.; Onishi-Kameyama, M.; Yoshida, M. Antimutagenicity of some edible Thai plants, and a bioactive carbazole alkaloid, mahanine, isolated from Micromelum minutum. J. Agric. Food. Chem. 2002, 50, 4796–4802. Roy, M. K.; Vipaporn, N. T.; Trakoontivakorn, G.; Nakahara, K. Mechanism of mahanine induced cell death in HL-60 cells. Biochem. Pharma. 2004, 67, 41–51. Chen, G. Y. (2001). Design and synthesis of benzenesulfonamide derivatives as potential cell cycle targeting inhibitors. (Master Thesis, National Taiwan University, 2001). Cranwell, P. A.; Saxton, J. E. A synthesis of ellipticine. J. Chem. Soc. 1962, 3482-3487. Ziersch, P. Carbazole derivatives. Chan. Ber. 1909, 42, 3977-3980. Abraham, D. J. (1995) Burger's medicinal chemistry and drug discovery. 6th Edition. Volume 1: Drug discovery, Wiley-Interscience, New York, p848. Sindney, G.; Horning, E. C.; Smith, A. F. Alkaloids of Ochrosia elliptica Labill. J. Am. Chem. Soc. 1959, 81, 1903-1908. Le Pecq, J. B.; Gosse, C.; Dat-Xuong, N.; Paoletti, C. A New Antitumoral agent: 9-hydroxyellipticine. Possibility of a rational design of anticancerous drugs in the series of DNA intercalating drugs. Proc. Natl. Acad. Sci. USA 1974, 71, 5078-5082. Le Pecq, J. B.; Gosse, C.; Dat-Xuong, N.; Paoletti, C. Un nouveau composé anti-tumoral: l'hydroxy-9 ellipticine. Action sur la leucémie L 1210 de la souris. C. R. Acad. Sci., Ser. D 1973, 277, 2289-2291. Paoletti, C.; Le Pecq, J. B.; Dat-Xuong, N.; Huret, P. J.; Gamier, H.; Amiel, J. L.; Rouesse, J. Antitumor activity, pharmacology, and toxicity of ellipticines, ellipticinium, and 9-hydroxy derivatives: preliminary clinical trials of 2-methyl-9-hydroxy ellipticinium (NSC 264-137). Recent Results Cancer Res. 1980, 74, 107-123. Herman, E.; Chadwick, D. P.; Mhatre, R. M. Comparison of the acute hemolytic and cardiovascular actions of ellipticine (NSC 71795) and some ellipticine analogs. Cancer Chemother. Rep. 1974, 58, 637-643. Dracinsky, M.; Sejbal, J.; Rygerova, B.; Stiborova, M. An efficient modification of ellipticine synthesis and preparation of 13-hydroxyellipticine. Tetrahedron Lett. 2007, 48, 6893–6895. Froelich-Ammon, S. J.; Patchan, M. W.; Osheroff, N.; Thompson, R. B. Topoisomerase II binds to ellipticine in the absence or presence of DNA: characterization of enzyme drug interactions by fluorescence spectroscopy. J. Biol. Chem. 1995, 270, 14998-15004. Gedye R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 1986, 27, 279-282. Gedye, R. N.; Smith, F. E.; Westaway, K. C. The rapid synthesis of organic compounds in microwave ovens. Can. J. Chem. 1988, 66, 17-26. Giguere, R. J.; Bray, T.; Duncan, S. M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett. 1986, 27, 4945-4948. Högermeier, J.; Reibig, H.-U. First Comprehensive Investigation of Suzuki Couplings of Alkenyl Nonaflates with Aryl and Alkenyl Boronic Acid Derivatives by Using Classical Conditions and Microwave Heating. Chem. Eur. J. 2007, 13, 2410-2420. Cravotto, G.; Cintas, P. The Combined Use of Microwaves and Ultrasound: Improved Tools in Process Chemistry and Organic Synthesis. Chem. Eur. J. 2007, 13, 1902-1909. Liu, J-F.; Ye, P.; Zhang B.; Bi, G.; Sargent K.; Yu, L.; Yohannes D.; Baldino, C. M. Three-component one-pot total syntheses of Glyantrypine, Fumiquinazoline F, and Fiscalin B promoted by microwave irradiation. J. Org. Chem. 2005, 70, 6339-6345. Liu, J.-F.; Kaselj, M.; Isome, Y.; Chapnick, J.; Zhang, B.; Bi, G.; Yohannes, D.; Yu, L.; Baldino, C. M. Microwave-assisted concise total syntheses of quinazolinobenzodiazepine alkaloids. J. Org. Chem. 2005, 70, 10488-10493. Le´pine, R.; Zhu, J. Microwave-assisted intramolecular Suzuki−Miyaura reaction to macrocycle, a concise asymmetric total synthesis of Biphenomycin B. Org. Lett. 2005, 7, 2981-2984. Asche, C.; Demeunynck, M. Antitumor carbazoles. Curr. Med. Chem. Anticancer Agents 2007, 7, 247-267. Garbett, N. C.; Graves, D. E. Extending Nature's Leads: the anticancer agent ellipticine. Curr. Med. Chem. Anticancer Agents 2004, 4, 149-172. Gribble, G. W.; Saulnier, M. G.; Sibi, M. P.; Obaza-Nutaitis, J. A. Synthesis and Diels-Alder reactions of 1,3-dimethyl-4-(phenylsulfonyl)-4H-furo[3,4-b]indole. A new annulation strategy for the construction of ellipticine and isoellipticine. J. Org. Chem 1984, 49, 4518-4523. Ketcha, D. M.; Gribble, G. W. A convenient synthesis of 3-acylindoles via Friedel Crafts acylation of 1-(phenylsulfonyl)indole. A new route to pyridocarbazole-5,11-quinones and ellipticine. J. Org. Chem. 1985, 50, 5451-5457. Bennasar, M.; Roca, T.; Ferrando, F. Regioselective intramolecular reactions of 2-indolylacyl radicals with pyridines: a direct synthetic entry to ellipticine quinones. J. Org. Chem. 2005, 70, 9077-9080. Bobbitt, J. M.; Kiely, J. M.; Khanna, K. L.; Ebermann, R. Synthesis of isoquinolines. III. A new synthesis of 1,2,3,4-tetrahydroisoquinolines. J. Org. Chem. 1965, 30, 2247-2250. Birch, A. J.; Jackson, A. H.; Shannon, P. V. R. A new modification of the Pomeranz–Fritsch isoquinoline synthesis. J. Chem. Soc. Perkin I 1974, 2185-2190. Kikugawa,Y.; Aoki, Y.; Sakamoto, T. Synthesis of carbazoles from N-(N,N-diarylamino)- phthalimides with aluminum chloride via diarylnitrenium ions. J. Org. Chem. 2001, 66, 8612-8615. Dalton, L. K.; Demerac, S.; Elmes, B. C.; Loder, J. W.; Swan, J. M.; Teitei, T. Synthesis of the tumor-inhibitory alkaloids, ellipticine, 9-methoxyellipticine, and related pyrido[4,3-b]- carbazoles. Aust. J. Chem. 1967, 20, 2715-2727. Mustafin, A. G.; Khalilov, I. N.; Tal’vinskii, E. V.; Abdrakhmanov, I. B.; Spirikhin, L. V.; Tolstikov, G. A. Intramolecular cyclization of ortho-(cyclohex-2-enyl) anilines synthesis of ellipticine. Chem. Nat. Compd. Engl. 1992, 5, 479-483. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45283 | - |
| dc.description.abstract | 為了發展出強效的細胞週期抑制劑,本論文將以E7010為起始模板進行結構修飾。根據固定構型設計概念,E7010中連接兩芳香環之可旋轉的二級胺鍵結將被固定。根據此設計構想合成了一系列1,4-二甲基咔唑苯磺醯胺衍生物。生物活性測試結果顯示,化合物18a展現強效的抑癌效果,其對於HeLa、HT-29及Hep3B腫瘤細胞呈現GI50為0.02至0.07 µM的卓越抑制活性。另外,咔唑苯磺醯胺衍生物26b亦呈現良好的抑癌活性,其對於A549腫瘤細胞呈現GI50為0.08 µM的抑制活性。磺醯胺結構上取代甲基及乙基之化合物22a及23a不僅保持強效之生物活性,對於AGS及PC-3腫瘤細胞,甚至呈現更有效的抑制活性。
由於橢圆玫瑰樹鹼之四環平面結構包含1,4-二甲基咔唑特徵,為了提高苯磺醯胺衍生物18a之抗癌活性,本論文將化合物18a之1,4-二甲基咔唑置換成橢圆玫瑰樹鹼,合成了一系列橢圆玫瑰樹鹼苯磺醯胺衍生物30。雖然其生物活性測試結果並未呈現強效的癌細胞抑制活性,但是橢圆玫瑰樹鹼第7位卻是值得繼續探索並發展更有效的腫瘤細胞抑制劑。 欲求提高Saxton合成橢圆玫瑰樹鹼全合成之產率,本論文運用微波於橢圆玫瑰樹鹼之全合成。透過單槽式合法法合成二級胺化合物47,可以有效地降低反應時間並提高合成產率,全合成總產率提升約10倍。為求更高反應產率,較低產率的D環環化步驟,因為二級胺結構轉化成甲基苯磺胺結構56後,大大地提升其環化產率至75%,全合成總產率提升約25倍。為了將微波廣泛地運用於橢圆玫瑰樹鹼衍生物合成中,微波亦應用於9-溴化橢圆玫瑰樹鹼及9-硝基橢圆玫瑰樹鹼合成中,皆能獲得良好的反應產率。 | zh_TW |
| dc.description.abstract | Abstract
An attempt to develop potent agents to arrest cell cycle, E7010 (6) was chosen as the lead compound. Based on conformational restriction approach, to constrain the secondary amine linkage between pyridine and benzene in E7010 was proposed. Accordingly, 1,4-dimethylcarbazole motif was considered to be an essential scaffold. In the result, 18a demonstrated activities against several cancer cell lines, especially for HeLa, HT-29 and Hep3B cancer cell lines with GI50 in the range of 0.02 to 0.07 µM. Besides, carbazolyl sulfonamide 26b also exhibited potent cytotoxic activities. It inhibited A549 cell with GI50 at 0.08 µM. Compounds containing methyl (22a) and ethyl (23a) on sulfonamide nitrogen lead to not only enhance the potency but also to provide better activities against AGS and PC-3 cell lines. Since ellipticine has a common skeleton of 1,4-dimethylcarbazole, to promote the activities of 18a, the 1,4-dimethylcarbazole of 18a was replaced with ellipticine. Therefore, ellipticine derivatives within benzenesulfonamide are developed. According to the initial biological assays, the attachment of benzenesulfonamide to ellipticine reduced the activities. Although ellipticine sulfonamide (30) didn’t demonstrate promising results, the research focus on the C-7 of ellipticine is still interesting. To explore the substituents on this position may provide opportunity to search potent anticancer agents. To improve the total synthesis of ellipticine based on Saxton’s approach, the one-pot synthesis of secondary amine 47 is considered to shorten the reaction time and improve the reaction yield compared to original approach. The long-lasting problematic low yield in the D-ring cyclization of ellipticine (27) by Saxton’s approach was dramatically improved through N-(1,4-dimethylcarbazol-3-ylmethyl)-N-tosylaminoacetaldehyde diethyl acetal (56) with microwave irradiation. The yield of D-ring cyclization of ellipticine was improved to 75%. The overall yield of ellipticne starting from indole was significantly increased by 25-folds. Microwave was also used in the synthesis of 9-bromoellipticine and 9-nitroellipticine. Hence, this new approach is superior to reported methods in yields, reaction time, and it provides efficient access to a broad spectrum of ellipticine derivatives. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:12:19Z (GMT). No. of bitstreams: 1 ntu-99-F90423006-1.pdf: 5366375 bytes, checksum: fef83e1bc70afb3a6de847a5a101e81c (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii List of Schemes vi List of Tables vii List of Figures viii I. Introduction 1.1 Background 1 1.2 Cancer cell cycle 3 1.3 Clinical drugs targeting cancer cell cycle 4 1.4 Summary 7 II. Design and synthesis of 1,4-dimethylcarbazole analogues containing benzenesulfonamide 2.1 Introduction 9 2.2 Rational design 11 2.3 Synthesis of designed compounds 14 2.4 Biological activities and discussion 18 2.5 Summary 19 III. Design and synthesis of ellipticines analogues containing benzenesulfonamide 3.1 Introduction 25 3.2 Rational design 26 3.3 Synthesis of designed compounds 28 3.4 Biological activities and discussion 33 3.5 Summary 33 IV. Efficient microwave-assisted synthesis of ellipticine analogues 4.1 Introduction 35 4.2 Improvement of ellipticine synthesis with microwave 40 4.3 Results and discussion 46 4.4 Summary 47 V. Conclusions 48 VI. Experimental section 51 VII. References 83 VIII. Appendix…………………………………………………………………………………I | |
| dc.language.iso | en | |
| dc.subject | 微波 | zh_TW |
| dc.subject | 橢圓玫瑰樹鹼 | zh_TW |
| dc.subject | 二甲基咔 | zh_TW |
| dc.subject | 唑 | zh_TW |
| dc.subject | ellipticine | en |
| dc.subject | microwave | en |
| dc.subject | dimethylcarbazole | en |
| dc.title | 設計與合成1,4-二甲基咔唑及橢圓玫瑰樹鹼之
苯磺醯胺衍生物作為潛能抗癌試劑 | zh_TW |
| dc.title | Design and Synthesis of 1,4-Dimethylcarbazole and Ellipticine Analogues Containing Benzenesulfonamide Moiety as Potential Anti-cancer Agents | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王光昭,李安榮,顧記華,陳香惠,忻凌偉,孔繁璐,楊家榮 | |
| dc.subject.keyword | 橢圓玫瑰樹鹼,二甲基咔,唑,微波, | zh_TW |
| dc.subject.keyword | ellipticine,dimethylcarbazole,microwave, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-01-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
