請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45280
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐立中(Li-Chung Hsu) | |
dc.contributor.author | Tzu-Ting Tseng | en |
dc.contributor.author | 曾慈婷 | zh_TW |
dc.date.accessioned | 2021-06-15T04:12:10Z | - |
dc.date.available | 2013-03-12 | |
dc.date.copyright | 2010-03-12 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-01-26 | |
dc.identifier.citation | 1. Hsu, L.C., et al., The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature, 2004. 428(6980): p. 341-5.
2. Hoffmann, J.A., The immune response of Drosophila. Nature, 2003. 426(6962): p. 33-8. 3. Medzhitov, R., Origin and physiological roles of inflammation. Nature, 2008. 454(7203): p. 428-35. 4. Medzhitov, R., Recognition of microorganisms and activation of the immune response. Nature, 2007. 449(7164): p. 819-26. 5. Lin, W.W. and M. Karin, A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest, 2007. 117(5): p. 1175-83. 6. Hansson, G.K. and P. Libby, The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol, 2006. 6(7): p. 508-19. 7. Baccala, R., et al., TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med, 2007. 13(5): p. 543-51. 8. Banchereau, J. and V. Pascual, Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity, 2006. 25(3): p. 383-92. 9. Akira, S., S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity. Cell, 2006. 124(4): p. 783-801. 10. Trinchieri, G. and A. Sher, Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol, 2007. 7(3): p. 179-90. 11. Lemaitre, B., et al., The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 1996. 86(6): p. 973-83. 12. Leulier, F. and B. Lemaitre, Toll-like receptors--taking an evolutionary approach. Nat Rev Genet, 2008. 9(3): p. 165-78. 13. O'Neill, L.A. and A.G. Bowie, The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol, 2007. 7(5): p. 353-64. 14. Zarember, K.A. and P.J. Godowski, Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol, 2002. 168(2): p. 554-61. 15. Deng, L., et al., Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 2000. 103(2): p. 351-61. 16. Wang, C., et al., TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 2001. 412(6844): p. 346-51. 17. Ninomiya-Tsuji, J., et al., The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 1999. 398(6724): p. 252-6. 18. Kagan, J.C. and R. Medzhitov, Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell, 2006. 125(5): p. 943-55. 19. Dunne, A., et al., Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J Biol Chem, 2003. 278(42): p. 41443-51. 20. Fitzgerald, K.A., et al., IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 2003. 4(5): p. 491-6. 21. Sharma, S., et al., Triggering the interferon antiviral response through an IKK-related pathway. Science, 2003. 300(5622): p. 1148-51. 22. Ikeda, F., et al., Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes. EMBO J, 2007. 26(14): p. 3451-62. 23. Sato, S., et al., Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol, 2003. 171(8): p. 4304-10. 24. Jiang, Z., et al., Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc Natl Acad Sci U S A, 2004. 101(10): p. 3533-8. 25. Meylan, E., et al., RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol, 2004. 5(5): p. 503-7. 26. Kaiser, W.J. and M.K. Offermann, Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J Immunol, 2005. 174(8): p. 4942-52. 27. Rebsamen, M., et al., The antiviral adaptor proteins Cardif and Trif are processed and inactivated by caspases. Cell Death Differ, 2008. 15(11): p. 1804-11. 28. Han, K.J., et al., Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. J Biol Chem, 2004. 279(15): p. 15652-61. 29. Kagan, J.C., et al., TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol, 2008. 9(4): p. 361-8. 30. Carty, M., et al., The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol, 2006. 7(10): p. 1074-81. 31. Park, J.M., et al., Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science, 2002. 297(5589): p. 2048-51. 32. Hoebe, K., et al., Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature, 2003. 424(6950): p. 743-8. 33. Bianchi, M.E., DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol, 2007. 81(1): p. 1-5. 34. Dar, A.C., T.E. Dever, and F. Sicheri, Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Cell, 2005. 122(6): p. 887-900. 35. Dey, M., et al., Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition. Cell, 2005. 122(6): p. 901-13. 36. Sudhakar, A., et al., Phosphorylation of serine 51 in initiation factor 2 alpha (eIF2 alpha) promotes complex formation between eIF2 alpha(P) and eIF2B and causes inhibition in the guanine nucleotide exchange activity of eIF2B. Biochemistry, 2000. 39(42): p. 12929-38. 37. Garcia, M.A., et al., Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev, 2006. 70(4): p. 1032-60. 38. Goh, K.C., M.J. deVeer, and B.R. Williams, The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. EMBO J, 2000. 19(16): p. 4292-7. 39. McWhirter, S.M., et al., IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A, 2004. 101(1): p. 233-8. 40. Matsui, K., et al., Cutting edge: Role of TANK-binding kinase 1 and inducible IkappaB kinase in IFN responses against viruses in innate immune cells. J Immunol, 2006. 177(9): p. 5785-9. 41. Rothwarf, D.M. and M. Karin, The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE, 1999. 1999(5): p. RE1. 42. Hacker, H. and M. Karin, Regulation and function of IKK and IKK-related kinases. Sci STKE, 2006. 2006(357): p. re13. 43. Oganesyan, G., et al., Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature, 2006. 439(7073): p. 208-11. 44. Bonnard, M., et al., Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. EMBO J, 2000. 19(18): p. 4976-85. 45. Yang, Y.L., et al., Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J, 1995. 14(24): p. 6095-106. 46. Iwamura, T., et al., Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells, 2001. 6(4): p. 375-88. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45280 | - |
dc.description.abstract | 先天性免疫(innate immunity)主要是由具有吞噬能力的細胞如macrophage和dendritic cell所執行。有別於後天性免疫系統(adaptive immunity)所使用的經過體染色體重組之receptor,這些細胞利用特殊的PRR (pattern-recognition receptor)來偵測病原的存在。PRR為germ line-encoded並且辨認的是病原體尋常且共通的成分PAMPs (pathogen-associated molecular patterns),如LPS (lipopolysaccharide,革蘭氏陰性菌的細胞壁成分)、核酸等。偵測到病原體可引發細胞內訊息傳遞,促進細胞激素的釋放並且啟動發炎反應。發炎反應有助於病原體的清除,不過,過度的發炎反應卻是引發疾病的重要因素,諸如癌症、動脈硬化、第二型糖尿病、敗血症和自體免疫疾病皆與慢性或失控的發炎有關。研究顯示,除了病原體之外,內部組織的損傷也可以是引發先天性免疫和發炎反應的因子(DAMPs, danger-associated molecular patterns)。
TLR (Toll-like receptor)家族屬於PRR之一員,在哺乳動物中已發現13個TLR,且對其受質、下游訊息傳遞都已累積相當多的研究。其中,TLR4主要偵測LPS,並透過TRIF和MyD88兩個主要的adaptor protein來進行訊息傳遞。過去研究已知TLR4透過TRIF和下游之TRAF3、TBK1來磷酸化IRF3,進而促進干擾素IFNβ的產生。另外亦有較新的研究發現,剔除Pkr基因之細胞在受到LPS刺激之後無法正常引發IFNβ之反應,顯示PKR參與在此訊息傳遞當中,但是並不清楚其細節。因此,本篇研究旨在闡明PKR參與在TLR4下游、促進IFNβ產生的機制。我們發現TBK1會調控PKR的活性,並且PKR的活性亦對TBK1有正向影響。除此之外,PKR尚扮演著另一重要角色,橋接TBK1到TRAF3、TRIF的signaling complex。這些發現讓我們對於TLR4的訊息傳遞有了更詳細的了解,也對於治療發炎、感染等造成之疾病有莫大助益。 | zh_TW |
dc.description.abstract | Innate immunity is of great importance not only in host defense against infections, but also has been implicated in development and tissue homeostasis. Immune cells, such as macrophages, use pattern-recognition receptors (PRR) to sense microbes and dying cells and initiate inflammatory response that helps to fight the pathogen and assist tissue repair. However, the inflammation process must be finely tuned or it may turn out to be pathogenic. Among several classes of PRR, the mammalian TLR (Toll-like receptor) family comprises 13 membrane receptors which are able to recognize a range of conserved microbial motifs termed PAMPs (pathogen-associated molecular patterns) or endogenous DAMPs (danger-associated molecular patterns) released by stressed or damaged tissues and activate immune response.
PKR (dsRNA-dependent protein kinase) has been shown to be involved in IFNβ production and apoptosis in LPS-induced macrophages previously [1]. In this study we further characterize the functional role of PKR in the TLR4 signaling pathway. We found that TBK1 regulates PKR activation, which in turn enhances TBK1 kinase activity. We also demonstrated that PKR is required for maintaining the integrity of TRIF-TRAF3-TBK1 complex. Our findings further delineate the TLR4-TRIF signaling pathway after LPS stimulation, and could shed some light in advanced understanding of certain inflammatory and infectious diseases and development of therapies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:12:10Z (GMT). No. of bitstreams: 1 ntu-99-R96448009-1.pdf: 1550691 bytes, checksum: 526f603445af1a531099b81250dd9494 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv Contents v Introduction 1 Results 11 Discussion 17 Materials and Methods 22 References 29 Figures 33 | |
dc.language.iso | en | |
dc.title | PKR在TLR4訊息傳遞中扮演之角色 | zh_TW |
dc.title | Characterization of PKR function in TLR4 signaling | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林琬琬(Wan-Wan Lin),陳俊任(Chun-Jen Chen) | |
dc.subject.keyword | 發炎反應,TLR4,PKR,TBK1, | zh_TW |
dc.subject.keyword | inflammation,TLR4,PKR,TBK1, | en |
dc.relation.page | 41 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-01-26 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。