請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45279完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 石明豐(Ming-Feng Shih) | |
| dc.contributor.author | Chih-Shiang Chou | en |
| dc.contributor.author | 周自翔 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:12:07Z | - |
| dc.date.available | 2010-02-04 | |
| dc.date.copyright | 2010-02-04 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-01-25 | |
| dc.identifier.citation | [1] N. B. Abraham and W. J. Firth. Overview of transverse e ects in nonlinearoptical systems. J. Opt. Soc. Am. B, 7(6):951-962, 1990.
[2] G. P. Agrawal. Modulation instability induced by cross-phase modulation. Phys. Rev. Lett., 59(8):880, 1987. [3] G. P. Agrawal. Nonlinear Fiber Optics. Academic Press, San Diego, 2nd edition, 1995. [4] K. J. Andrew. Dielectric relaxation in solids. J. Phys. D: Appl. Phys., 32(14):R57, 1999. [5] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau. Optically-induced defractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett., 9(1):72-74, 1966. [6] T. B. Benjamin and J. E. Feir. The disintegration of wave trains on deep water Part 1. Theory. J. Fluid Mech., 27(03):417-430, 1967. [7] S. J. Bentley, R. W. Boyd, W. E. Butler, and A. C. Melissinos. Spatial patterns induced in a laser beam by thermal nonlinearities. Opt. Lett., 26(14):1084-1086, 2001. [8] V. I. Bespalov and V. I. Talanov. Filamentary structure of light beams in nonlinear liquids. JETP Lett., 3(11):6, 1966. [9] M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd. Observation of ultraslow light propagation in a ruby crystal at room temperature. Phys. Rev. Lett., 90(11):113903, 2003. [10] M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd. Superluminal and slow light propagation in a room-temperature solid. Science, 301(5630):200, 2003. [11] K. Blow and D. Wood. Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Elect., 1989. [12] R. W. Boyd. Nonlinear Optics. CA: Academic, San Diego, 1992. [13] D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk. Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys. Rev. Lett., 83(9):1767, 1999. [14] T. Carmon, M. Solja ci c, and M. Segev. Pattern formation in a cavity longer than the coherence length of the light in it. Phys. Rev. Lett., 89(18):183902, 2002. [15] F. S. Chen. A laser-induced inhomogeneity of refractive indices in KTN. J. Appl. Phys., 38(8):3418-3420, 1967. [16] S.-Y. Chen, T.-C. Lo, and M.-F. Shih. Stabilization of optical vortices in noninstantaneous self-focusing medium by small rotating intensity modulation. Opt. Express, 15(21):13689-13694, 2007. [17] R. Y. Chiao, E. Garmire, and C. H. Townes. Self-trapping of optical beams. Phys. Rev. Lett., 13(15):4, 1964. [18] R. Y. Chiao, P. L. Kelley, and E. Garmire. Stimulated four-photon interaction and its influence on stimulated Rayleigh-wing scattering. Phys. Rev. Lett., 17(22):1158-1161, 1966. [19] D. N. Christodoulides and M. I. Carvalho. Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B, 12(9):1628-1633, 1995. [20] W.-H. Chu, C.-C. Jeng, C.-H. Chen, Y.-H. Liu, and M.-F. Shih. Induced spatiotemporal modulation instability in a noninstantaneous self-defocusing medium. Opt. Lett., 30(14):1846-1848, 2005. [21] W.-H. Chu and M.-F. Shih. Spontaneous modulation instability in noninstantaneous self-defocusing medium with a coherent feedback. Opt. Commun., 282(12):2417-2420, 2009. [22] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65(3):851, 1993. [23] D. Dahan and G. Eisenstein. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering. Opt. Express, 13(16):6234-6249, 2005. [24] G. D'Alessandro and W. J. Firth. Spontaneous hexagon formation in a nonlinear optical medium with feedback mirror. Phys. Rev. Lett., 66(20):2597-2600, 1991. [25] P. Debye. Einige Resultate einer kinetischen Theorie der Isolatoren. Phys. Z, 13(14):97, 1912. [26] Z. Deng, D.-K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully. Time-bandwidth problem in room temperature slow light. Phys. Rev. Lett., 96(2):023602-4, 2006. [27] M. Frigo and S. Johnson. The design and implementation of FFTW3. P. IEEE, 93(2):216-231, 2005. [28] J. B. Geddes, R. A. Indik, J. V. Moloney, and W. J. Firth. Hexagons and squares in a passive nonlinear optical system. Phys. Rev. A, 50(4):3471-3485, 1994. [29] H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers. Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett., 94(7):073903, 2005. [30] S. E. Harris, J. E. Field, and A. Imamoglu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64(10):1107, 1990. [31] S. E. Harris, J. E. Field, and A. Kasapi. Dispersive properties of electromagnetically induced transparency. Phys. Rev. A, 46(1):R29, 1992. [32] R. G. Harrison and J. S. Uppal. Nonlinear Dynamics and Spatial Complexity in Opitcal Systems. SUSSP-IOP Publication, Edinburgh, 1993. [33] A. Hasegawa. Theory of aurora band. Phys. Rev. Lett., 24(21):1162-1165, 1970. [34] A. Hasegawa and W. Brinkman. Tunable coherent ir and r sources utilizing modulational instability. IEEE J. Quantum Elect., 1980. [35] L. V. Hau. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 397(6720):594, 1999. [36] Y. Huang, L. Wang, S. Chen, Z. Wang, and Q. Li. The 3rd-order nonlinearity of bacteriorhodopsin by four-wave mixing. Chin. Sci. Bull., 45(19):1752-1755, 2000. [37] H. Kang, G. Hernandez, and Y. Zhu. Resonant four-wave mixing with slow light. Phys. Rev. A, 70(6):061804, 2004. [38] V. I. Karpman. Self-modulation of nonlinear plane waves in dispersive media. JETP Lett., 6:4, 1967. [39] A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris. Electromagnetically induced transparency: Propagation dynamics. Phys. Rev. Lett., 74(13):2447, 1995. [40] M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully. Ultraslow group velocity and enhanced nonlinear optical e ects in a coherently driven hot atomic gas. Phys. Rev. Lett., 82(26):5229, 1999. [41] R. D. L. Kronig. On the theory of dispersion of x-rays. J. Opt. Soc. Am., 12(6):547-556, 1926. [42] M. Lax, W. H. Louisell, and W. B. McKnight. From Maxwell to paraxial wave optics. Phys. Rev. A, 11(4):1365, 1975. [43] M. J. Lighthill. Some special cases treated by the whitham theory. Phil. Trans. R. Soc. A, 299(1456):28-53, 1967. [44] V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen. Kramers- Kronig Relations in Optical Materials Research. Springer, Berlin, 1st edition, 2005. [45] L. Lugiato. Transverse nonlinear optics: Introduction and review. Chaos Solitons Fractals, 4(8-9):1251-1258, 1994. [46] M. G. Moharam and L. Young. Hologram writing by the photorefractive effect with Gaussian beams at constant applied voltage. J. Appl. Phys., 47(9):4048- 4051, 1976. [47] B. Mukherjee. Wdm optical communication networks: progress and challenges. IEEE Journal on Selected Areas in Communications, 18(10):1810, 2000. [48] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett., 87(25):253902, 2001. [49] Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett., 94(15):153902-4, 2005. [50] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin. Storage of light in atomic vapor. Phys. Rev. Lett., 86(5):783, 2001. [51] W. H. Press, S. A. Teukolsky, W. T. Veterling, and B. P. Flannery. Numerical Recipes in C. Cambridge University Press, Cambridge, 2nd edition, 1992. [52] L. Rayleigh. On progressive waves. Proc. London Math. Soc., 9:21, 1877. [53] M. Remoissenet. Waves Called Solitons. Springer-Verlag, Berlin, 1993. [54] J. V. Roey, J. van der Donk, and P. E. Lagasse. Beam-propagation method: analysis and assessment. J. Opt. Soc. Am., 71(7):803-810, 1981. [55] N. N. Rosanov, A. A. Mak, and A. Z. Graznik. Transverse Patterns in Nonlinear Optics. SPIE, Bellingham, WA, 1993. [56] N. Saga, K. Tanaka, and O. Fukumitsu. Di raction of a gaussian beam through a finite aperture lens and the resulting heterodyne efficiency. Appl. Opt., 20(16):2827-2831, 1981. [57] O. Sandfuchs, F. Kaiser, and M. R. Belic. Self-organization and fourier selection of optical patterns in a nonlinear photorefractive feedback system. Phys. Rev. A, 64(6):063809, 2001. [58] J. Scheuer and A. Yariv. Sagnac eff ect in coupled-resonator slow-light waveguide structures. Phys. Rev. Lett., 96(5):053901-4, 2006. [59] M. Schwab, C. Denz, and M. Sa man. Transverse modulational instability in counterpropagating two-wave mixing with frequency-detuned pump beams. J. Opt. Soc. Am. B, 18(5):628-638, 2001. [60] M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv. Steadystate spatial screening solitons in photorefractive materials with external applied fi eld. Phys. Rev. Lett., 73(24):3211-3214, 1994. [61] J. Sharping, Y. Okawachi, and A. Gaeta. Wide bandwidth slow light using a Raman ber ampli er. Opt. Express, 13(16):6092-6098, 2005. [62] M.-F. Shih, C.-C. Jeng, F.-W. Sheu, and C.-Y. Lin. Spatiotemporal optical modulation instability of coherent light in noninstantaneous nonlinear media. Phys. Rev. Lett., 88(13):133902, 2002. [63] M.-F. Shih, M. Segev, G. Valley, G. Salamo, B. Crosignani, and P. Di Porto. Observation of two-dimensional steady-state photorefractive screening solitons. Electron. Lett., 31(10):826-827, 1995. [64] M.-F. Shih and F.-W. Sheu. Dynamic soliton-like modes. Phys. Rev. Lett., 86(11):2281-2284, 2001. [65] E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein. Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric ampli cation. Opt. Express, 14(19):8540-8545, 2006. [66] K. Y. Song, M. G. Herraez, and L. Thevenaz. Long optically controlled delays in optical fibers. Opt. Lett., 30(14):3, 2005. [67] K. Y. Song, M. G. Herraez, and L. Thevenaz. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express, 13(1):7, 2005. [68] J. Stuart A. Collins. Lens-system di raction integral written in terms of matrix optics. J. Opt. Soc. Am., 60(9):1168-1177, 1970. [69] K. Tai, A. Hasegawa, and A. Tomita. Observation of modulational instability in optical fi bers. Phys. Rev. Lett., 56(2):135-138, 1986. [70] T. Taniuti and H. Washimi. Self-trapping and instability of hydromagnetic waves along the magnetic eld in a cold plasma. Phys. Rev. Lett., 21(4):209-212, 1968. [71] S. P. Tewari and G. S. Agarwal. Control of phase matching and nonlinear generation in dense media by resonant elds. Phys. Rev. Lett., 56(17):1811, 1986. [72] L. Thylen. The beam propagation method: An analysis of its applicability. Opt. Quant. Electron., 15(5):433-439, 1983. [73] M.-C. Tsai. Modulation instability in non-instantaneous self-defocusing medium in the incoherent cavity. Master's thesis, National Taiwan University, 2006. [74] A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer. Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett., 88(2):023602, 2001. [75] Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. NcNab. Active control of slow light on a chip with photonic crystal waveguides. Nature, 438(7064):65-69, 2005. [76] M. A. Vorontsov and W. B. Miller. Self-organization in Optical Systems and Applications in Information Technology. Springer, Berlin, 1995. [77] G. B. Whitham. Non-linear dispersion of water waves. J. Fluid Mech., 27(02):399-412, 1967. [78] P. Wu and D. V. G. L. N. Rao. Controllable snail-paced light in biological bacteriorhodopsin thin lm. Phys. Rev. Lett., 95(25):253601-4, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45279 | - |
| dc.description.abstract | 許多非線性系統中都可見到調變不穩定(Modulation Instability,MI)的現象,此現象由載波中的振幅微小調變開始,隨著波的傳播,調幅因波與物質間的交互作用而得到增長,最後此載波變得不穩定,向某些位置集中。然而當波高度集中時,繞射或色散會變得更顯著,因此調幅並不能無限增長,最終這兩種互相對抗的作用會平衡,造成了MI。
在習慣上,MI的研究著重於非線性的機制,以及何種時間或空間中的形態會出現在MI之中,而鮮少討論非線性的反應時間如何影響MI。在本論文中,我們提出關於反應時間的問題,特別是在非線性光學系統中的現象。不僅如此,我們也研究空腔對於非即時性介質中MI的影響,並且研究在非即時介質中MI對於慢光的應用。第一章介紹了關於MI的詳細背景,並且介紹了數學工具以及隨後會使用到的數值模擬方法。 我們以理論與實驗研究了在非即時性自散焦介質中,MI自發條紋的產生。在這系統中,非線性介質被放置在超過循環光相干長度的空腔中,非線性的延遲反應增長了擁有特定的時間與空間頳率的雜訊。雖然沒有因不同循環的光造成干涉的共振條件,但此空腔依然如有共振般選出某特定頻率。若此頻率的條紋因非線性獲得的增益比空腔損失的多,則此條紋便會自發產生。 我們亦在理論上發現非即時性自聚焦介質中的MI可用來產生慢光。我們使用光束傳播法來模擬慢光,以及使用傅利葉分析分解光脤衝來預測在此介質中光的群速度。這種達成慢光的新方法可用於任何非即時反應的自聚焦介質中,並且提供了簡單的方法來調整光在介質中的群速度。在最後一章裡,我們做出結論以及建議未來可能的研究方向。 | zh_TW |
| dc.description.abstract | Modulation Instability (MI) is a phenomenon that can occur in many different nonlinear systems. It usually starts from a small modulation of the amplitude of the carrier wave. As the wave propagates, the amplitude modulation grows larger by the interaction between the wave and the medium. As a result, the wave will be unstable and become more concentrated in certain locations. However the amplitude modulation cannot grow infinitely since the wave will diffract or disperse more when it is more concentrated. It is the balance between these two counter actions that define the end result of the MI.
Traditionally, the study of MI is focused on the mechanism of the nonlinearity as well as what patterns, either spatial or temporal, will emerge from the MI. Seldom is it discussed how the response time of the nonlinearity affects the MI. In this dissertation, we address on this issue, especially in a nonlinear optical system. More than that, we also study how MI in noninstantaneous medium is affected in a cavity and how can we use MI in noninstantaneous medium for slow light application. In Chapter 1, a detailed background of MI will be given. We also introduce the mathematical tool as well as the simulation method that is used for the later analysis. We then study, theoretically and experimentally, the spontaneous pattern formation of modulation instability in a noninstantaneous self-defocusing medium, which is placed in a cavity longer than the coherence length of the circulating light. The delayed response of the nonlinearity can amplify the noise of certain spatial and temporal frequencies. Although it lacks the resonance condition resulted from the interference between different cycles, the cavity can still select one specific frequency. A pattern of this frequency can emerge spontaneously if its gain from the nonlinearity is larger than the total cavity loss. We also find theoretically that modulation instability in a noninstantaneous medium could be used to achieve slow light. We use beam propagation method to simulate slow light and use Fourier decomposition of the light pulse to predict the reduced group velocity in such medium. This new method of achieving slow light can be used in any self-focusing medium with noninstantaneous nonlinear response. It also provides an easy way to adjust the group velocity of the light in the medium. In the last chapter, we will conclude the results and suggest possible research direction for the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:12:07Z (GMT). No. of bitstreams: 1 ntu-99-D92222021-1.pdf: 11593319 bytes, checksum: 62b52d473311a7cebb8de7327577ce89 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Abstract iii
Chinese Abstract v Acknowledgements vii Table of Contents ix List of Figures xi 1 Optical Modulation Instability in Noninstantaneous Media 1 1.1 Introduction 1 1.2 Nonlinear Schrodinger equation 2 1.3 MI in noninstantaneous nonlinear media 4 1.4 Method of numerical simulation 9 1.5 Program frameworks 12 2 Modulation Instability in Self-defocusing Media with Incoherent Feedback 15 2.1 Introduction 15 2.2 Theoretical analysis 16 2.3 Simulation result 24 2.4 Comparing to the experiment 32 2.5 Conclusion 37 3 Slow Light Achieved by Noninstantaneous Modulation Instability 39 3.1 Introduction 39 3.2 Theoretical analysis 41 3.3 Simulation results 46 3.4 Applications 50 3.5 Conclusion 52 4 Summary 53 Bibliography 55 | |
| dc.language.iso | en | |
| dc.subject | 慢光 | zh_TW |
| dc.subject | 非線性光學 | zh_TW |
| dc.subject | 調變不穩定性 | zh_TW |
| dc.subject | 混沌 | zh_TW |
| dc.subject | 自聚焦 | zh_TW |
| dc.subject | 自散焦 | zh_TW |
| dc.subject | 非相干性回饋 | zh_TW |
| dc.subject | 非即時性 | zh_TW |
| dc.subject | noninstantaneous | en |
| dc.subject | slow light | en |
| dc.subject | nonlinear optics | en |
| dc.subject | modulation instability | en |
| dc.subject | chaos | en |
| dc.subject | self-focusing | en |
| dc.subject | self-defocusing | en |
| dc.subject | incoherent feedback | en |
| dc.title | 在非即時自散焦材料中非相干回饋系統的調變不穩定現象及使用調變不穩定性產生慢光的研究 | zh_TW |
| dc.title | Modulation Instability in Noninstantaneous Self-defocusing Media with Incoherent Feedback and Slow Light Achieved by Modulation Instability in Noninstantaneous Self-focusing Media | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 曹培熙,傅昭銘,李瑞光,鄭建宗 | |
| dc.subject.keyword | 非線性光學,調變不穩定性,混沌,自聚焦,自散焦,非相干性回饋,非即時性,慢光, | zh_TW |
| dc.subject.keyword | nonlinear optics,modulation instability,chaos,self-focusing,self-defocusing,incoherent feedback,noninstantaneous,slow light, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-01-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 11.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
