Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45230
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許晃雄
dc.contributor.authorCheng-Han Wuen
dc.contributor.author吳政翰zh_TW
dc.date.accessioned2021-06-15T04:09:53Z-
dc.date.available2010-02-04
dc.date.copyright2010-02-04
dc.date.issued2010
dc.date.submitted2010-02-02
dc.identifier.citationAdler, R. F., G. J. Huffman, D. T. Bolvin, S. Curtis, and E. J. Nelkin, 2000: Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J. Appl. Meteor., 39, 2007–2023.
Baum, B. A., and S. Platnick, 2006: Introduction to MODIS cloud products. Earth Science Satellite Remote Sensing, 1: Science and instruments., 74-91.
Chepfer, H., Goloub, P., Spinhirne, J. et al., (2000) Cirrus cloud properties derived from POLDER-1/ADEOS polarized radiances: first validation using a ground-based Lidar network, J. Appl. Meteor.,39, 154-168.
Cho, H. -R. and D. Pendlebury, 1997: Wave CISK of equatorial waves and the vertical distribution of cumulus heating. J. Atmos. Sci., 54, 2429-2440.
Chou, M.-D., P.-K. Chan, and M. M.-H. Yan, 2001: A sea surface radiation data set for climate applications in the tropical western Pacific and South China Sea. J. Geophys. Res., 106(D7), 7219–7228.
Chou, S.-H., E. Nelkin, J. Ardizzone, R. Atlas, and C.-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16, 3256-3273.
Corder, G.W. and D.I. Foreman, (2009) Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach, New Jersey: Wiley.
Dessler, A.E., and P. Yang, 2003: The Distribution of Tropical Thin Cirrus Clouds Inferred from Terra MODIS Data. J. Climate, 16, 1241–1247.
Dunbar, R. S., T. Lungu, B. Weiss, B. Stiles, J. Huddleston, P. S. Callahan, G. Shirtliffe, K. L. Perry, C. Hsu, C. Mears, F. Wentz, D. Smith, 2006: QuikSCAT Science Data Product User's Manual, Version 3.0. JPL Document D-18053 - Rev A, Jet Propulsion Laboratory, Pasadena, CA.
Emanuel, K. A., 1987: An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 2324-2340.
Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: the implications for intraseasonal oscillations. J. Atmos. Sci., 54, 2373-2386.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447-462.
Haddad, Z. S., E. A. Smith, C. D. Kummerow, T. Iguchi, M. R. Farrar, S. L. Durden, M. Alves, and W. S. Olson, 1997a: The TRMM `Day-1' radar/radiometer combined rain-profiling algorithm, J. Meteor. Soc. Japan, 75, 799-809.
----, D. A. Short, S. L. Durden, E. Im, S. Hensley, M. B. Grable, and R.A. Black, 1997b: A new parameterization of the rain drop size distribution', IEEE Trans. Geosci. Rem. Sens., 35, 532-539.
Hartmann, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and energy balance at the top of the atmosphere. J. Climate, 14, 4495–4511.
Hendon, H. H., and M. L. Salby, 1994: The Life Cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51, 2225–2237.
Hsu, H.-H., B. J. Hoskins, and F.-F. Jin, 1990: The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823-839.
----, 1996: Global view of the intraseasonal oscillation during northern winter. J. Climate, 9, 2386–2406.
----, C.-H. Weng, and C.-H. Wu, 2004: Contrasting characteristics between the northward and eastward propagation of the intraseasonal oscillation during the boreal summer. J. Climate, 17, 727–743.
----, and M. Y. Lee, 2005: Topographic effects on the eastward propagation and initiation of the Madden-Julian Oscillation. J. Climate, 6, 795–809.
Hung, C.w., X. Liu, and M. Yanai, 2004: Symmetry and Asymmetry of the Asian and Australian Summer Monsoons. J. Climate, 17, 2413–2426.
Hunt, C. R., and W. H. Snyder, 1980: Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96, 671–704.
Ichikawa, H., and T. Yasunari, 2008: Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during Austral summer. J. Climate, 21, 2852-2868.
Iguchi, T., T. Kozu, R. Meneghine, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar, J. Appl. Meteor., 39, 2038-2052.
Inness, P. M., and J. M. Slingo, 2006: The interaction of the Madden–Julian oscillation with the Maritime Continent in a GCM. Quart. J. Roy. Meteor. Soc., 132, 1645–1667.
Kalnay E., Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.
Kaylor, R. E., 1977: Filtering and decimation of digital time series. Tech. Note BN 850, Institute of Physical Science Technology, University of Maryland, College Park, 42pp.
Kummerow, C., J. Simpson, O. Thiele, W. Barnes, A. T. C. Chang, E. Stocker, R. F. Adler, A. Hou, R. Kakar, F. Wentz, P. Ashcroft, T. Kozu, Y. Hong, K. Okamoto, T. Iguchi, H. Kuroiwa, E. Im, Z. Haddad, G. Huffman, B. Ferrier, W. S. Olson, E. Zipser, E. A. Smith, T. T. Wilheit, G. North, T. Krishnamurti, and K. Nakamura, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 1965–1982.
---, Y. Hong, W.S. Olson, S. Yang, R.F. Adler, J. McCollum, R. Ferraro, G. Petty, D.B. Shin, and T.T. Wilheit, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 1801–1820.
Lau, K. -M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: basic theory. J. Atmos. Sci., 44, 950–972.
---, L. Peng, C.-H. Sui, and T. Nakazawa, 1989: Dynamics of super cloud clusters, westerly wind bursts, 30-60 day oscillations and ENSO: A unified view. J. Meteor. Soc. Jap., 67, 205-219.
----, and C. Sui, 1997: Mechanism for short-term sea surface temperature regulation: Observations during TOGA COARE. J. Climate, 10, 465-472.
Lee, M. -I., I. -S. Kang, and J. –K. Kim, 2001: Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation Model. J. Geophys. Res., 106, 14219-14233.
----, M. -I., I. -S. Kang, and B. E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963- 992.
Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275-1277.
Lin, J., B. Mapes, M. Zhang and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian Oscillation. J. Atmos. Sci., 61, 296–309.
Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156-179.
Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702-708.
Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden-Julian Oscillation. J. Climate, 9, 2387-2403.
----, and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 4368–4386.
Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 1515-1535.
Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25-43.
Miura, H., M. Satoh, T. Nasuno, A.T. Noda, and K. Oouchi, 2007: A Madden-Julian Oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 1763.
Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor.Soc. Japan, 66, 823–839.
Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: a GCM study. J. Climate, 16, 834–848.
Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341-2348.
Onogi, K., J. Tsutsui, H. Koide, M. Sakamoto, S. Kobayashi, H. Hatsushika, T. Matsumoto, N. Yamazaki, H. Kamahori, K. Takahashi, S. Kadokura, K. Wada, K. Kato, R. Oyama, T. Ose, N. Mannoji and R. Taira, 2007 : The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369-432.
Rossow, W. B., and R. A. Schiffer, 1999: Advances in Understanding Clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2287.
Rajendran, K., A. Kitoh, R. Mizuta, S. Sajani, and T. Nakazawa, 2008: High-resolution simulation of mean convection and its intraseasonal variability over the tropics in the MRI/JMA 20-km mesh AGCM. J. Climate, 21, 3722, 3739.
Salby, M. L., R. R. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 2344-2367.
Sha, W., K. Nakabayashi, and H. Ueda, 1998: Numerical study on flow pass of a three-dimensional obstacle under a strong stratification condition. J. Appl. Meteor., 37, 1047–1054.
Shibagaki, Y., T. Shimomai, T. Kozu, S. Mori, Y. Fujiyoshi, H. Hashiguchi, M.K. Yamamoto, S. Fukao, and M.D. Yamanaka, 2006: Multiscale aspects of convective systems associated with an intraseasonal oscillation over the Indonesian Maritime Continent. Mon. Wea. Rev., 134, 1682–1696.
Shibata, A., K. Imaoka, M. Kachi and H. Murakami (1999): SST observation by TRMM Microwave Imager aboard Tropical Rainfall Measuring Mission. Umi no Kenkyu, 8, 135–139 (in Japanese with English abstract).
Simmons, A., J. Wallace, and G. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 1363–1392.
Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow pass three-dimensional obstacle. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 1154–1164.
Sperber, K. R., 2003: Propagation and the vertical structure of the Madden–Julian Oscillation. Mon. Wea. Rev., 131, 3018–3037.
Sui, C. -H. and K. -M Lau, 1989: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part 2: Structure and propagation of mobile wave-CISK modes and their modification by lower boundary forcings. J. Atmos. Sci., 46, 37-56.
Takahashi, M., 1987: Theory of the slow phase speed of the intraseasonal oscillation using the wave-CISK. J. Meteor. Soc. Japan., 65, 43-49.
Tian, B, D. E. Waliser, and E. J. Fetzer, 2006: Modulation of the diurnal cycle of tropical deep convective clouds by the MJO. Geophys. Res. Lett., 33, L20704, doi:10.1029/2006GL0277752.
Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.
Wang, B., 1998a: Comments on 'An air-sea interaction model of intraseasonal oscillation in the tropics'. J. Atmos. Sci., 45, 3521-3525.
----, 1988b: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin waves. J. Atmos. Sci., 45, 2051-2065.
----, and H. Rui, 1990a: Dynamics of the coupled moist Kelvin-Rossby wave on an equatorial beta-plane. J. Atmos. Sci., 47, 397-413.
----, and H. Rui, 1990b: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975-1985. Meteor. Atmos. Phys., 44, 43-61.
Wang, W. and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-Layer atmospheric GCM. J. Climate, 12, 1423–1457.
Wang, P.-H., Minnis, P., McCormick, M. P., Kent, G. S., and Skeens, K. M., 1996: A 6-year climatology of cloud occurrence frequency from stratospheric aerosol and gas experiment II observations (1985–1990), J. Geophys. Res., 101, 29407–29429.
Wheeler, M. and G. N. Kiladis, 1999: Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos.Sci., 56, 374–399.
Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth's Radiant Energy System (CERES): an Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853-868,.
Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13, 2086-2104.
Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys, 43, RG2003, doi:10.1029/2004RG000158, 2005.
----, M. Dong, S. Gualdi, H. H. Hendon, E. D. Maloney, A. Marshall, K. R. Sperber, and W. Wang, 2006: Simulations of the Madden-Julian Oscillation by Four Pairs of Coupled and Uncoupled Global Models. Climate Dynamics, 27, 573-592. DOI: 10.1007/s00382-006-0148-2.
----, and S. M. Hagos, 2009: Bi-modal structure and variability of large-scale diabatic heating in the tropics. J. Atmos. Sci., 66, 3621–3640.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45230-
dc.description.abstract本研究發現,當季內震盪 (Madden-Julian Oscillation, MJO) 在北半球冬季東移經過海洋大陸時,它的環流結構、雲系統(深對流、強降水以及不同雲種)分佈、以及相應的熱力剖面等特性,都會被海洋大陸的高聳複雜地形所影響。這些地形效應可以總結如下:1) 大體上,面積愈狹長、地形愈高聳的島嶼,對於流場的阻擋作用愈顯著。2) 新幾內亞這樣一個又高又長的島嶼所造成的阻擋作用,引發的氣流分流現象從地面到500毫巴的高度都可見到。3) 狹長但高度較低的蘇門達臘與爪哇島鏈,除了導致MJO西風帶向南轉向之外,也造成氣流過山以及下風處發生垂直波動的現象。4) 地形較集中如蘇拉維西與婆羅洲等島嶼,只有引發局部性的阻擋作用,並也造成下風處發生垂直波動的現象。這樣的地形阻擋作用,在這些特定島嶼區域形成了顯著的渦度場與幅合場。地形的存在使得季內震盪的大尺度環流產生了局部舉昇與下沉現象,因而造成季內震盪的深對流系統在其東移通過海洋大陸的過程中,在這些主要地形附近發生停頓現象。與深對流系統相關的降水、紊流、以及在大氣層頂與地面輻射通量,也因而受到了影響。由此可知,正確解析地形的細部節構,對於季內震盪東移通過海洋大陸的正確模擬,有著重要的影響;而忽略地形影響的aqua-planet模擬,可能就不再適用於我們對MJO的進一步研究中。zh_TW
dc.description.abstractThis study demonstrates that during the passage of the MJO through the Maritime Continent in the boreal winter, the corresponding circulation structure, cloud systems, as well as consequential heating profiles, are redistributed via complex topographic effects from mountainous islands. The effects could be summarized as follows. 1) Overall, more spatially-elongated and higher mountainous islands exert stronger blocking effect on the incoming flow. 2) The blocking effect of the elongated and high-rising New Guinea is so strong that it causes a complete flow bifurcation from the surface to above 500-hPa. 3) The long but low island chain of Sumatra and Java not only results in the southward deflection of the incoming westerly anomaly, but also allows the westerly anomaly to flow over and creates vertical wave-like perturbation in the downstream. 4) Less spatially-extended islands such as Sulawesi and Borneo exert only a localized blocking effect, causing significant downstream wave-like perturbation in the vertical. Distinctive vorticity and convergence distributions are therefore generated in this specific domain. The existence of topography seems to create extra lifting and sinking within the large-scale circulation and thus the convective system exhibits quasi-stationary features near the major topography during the MJO passage through the Maritime Continent. Associated precipitation, turbulent and radiative flux anomalies at TOA and surface are therefore affected. It is suggested that resolving the detailed topographic effects may play a key role in simulating realistic characteristics of the MJO in the Maritime Continent, while ignoring influence from tropical topography with an aqua-planet model may not be a proper approach for our further understanding of MJO.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:09:53Z (GMT). No. of bitstreams: 1
ntu-99-F89229001-1.pdf: 11930009 bytes, checksum: c4e73dc6c7806428c129034a0a672811 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsTable of contents

Acknowledgments II
Abstract III
Table of contents V
Table of figures VIII

Chapter 1 – Introduction 1
1.1 Dynamical aspects of the Madden-Julian Oscillation 2
1.2 Cloud distribution and diabatic heatings of the MJO 3
1.3 Complex Land-sea distribution in the Maritime Continent 6
Chapter 2 – Data and methodology 10
2.1 Composite method of the MJO index 11
2.2 The ISCCP cloud classification 12
2.3 Cirrus retrievals from MODIS 13
2.4 Convective percentage from TRMM Microwave Imager (TMI) 14
2.5 The Wilcoxon signed-rank test 15
Chapter 3 – Relationship between convection/circulation and topography 17
3.1 Deep convection and the associated precipitation 17
3.2 The circulation patterns 19
Chapter 4 – Vorticity, divergence,and vertical structure 22
4.1 Vorticity and divergence 22
4.2 Meridional profiles at specific longitudes 25
4.3 Zonal profiles of 5˚S and 10˚S 28
Chapter 5 – Evolution of Cloud Distribution 32
5.1 The MJO cloud evolution in the Eastern Hemisphere 32
a. The high cloud amount 32
b. The middle cloud amount 34
c. The low cloud amount 34
5.2 Cirrus clouds associated with the propagating MJO 36
Chapter 6 – Cloud profiles and diabatic heatings 38
6.1 Convective component of surface precipitation 38
6.2 Cross sections of Q1/Q2 heating profiles 40
6.3 Longwave and shortwave radiation fluxes at TOA 43
6.4 Surface fluxes and SST 44
Chapter 7 – Summary and discussion 48
REFERENCES 52
Appendix A. Comparison of JRA25, NCEP, QuikSCAT, and ERA40 datasets 60
Appendix B. Associated Matsuno-Gill pattern with the MJO 62
Appendix C. Other intraseasonal cloud systems: a global view 63
a. The Northern Pacific stage (phase 1-3) 63
b. The Eastern Pacific stage (phase 4-6) 63
c. The African stage (phase 7-9) 64
Appendix D. Significance test of low cloud amount anomalies 65
Figures

Table of figures

Fig. 1.1. Illustration of the Madden-Julian Oscillation.
Fig. 1.2. The Kelvin-Rossby wave packet (Matsuno-Gill pattern).
Fig. 1.3. Schematic diagram of the “stratiform instability”.
Fig. 1.4. Schematic diagram of the “Air-Sea Convective Intraseasonal Interaction”.
Fig. 1.5. Topography in the Maritime Continent.
Fig. 2.1. The first 2 EOFs and lag-correlation of the first 2 PCs of filtered OLR.
Fig. 2.2. ISCCP cloud classification used in the D-series datasets in daytime.
Fig. 3.1. Intraseasonal variances of precipitation and zonal wind at 850-hPa in DJF.
Fig. 3.2. Surface precipitation and OLR anomalies from phase 1 to 7.
Fig. 3.3. Surface precipitation and 10-m wind anomalies from phase 2 to 7.
Fig. 3.4. Surface precipitation and 850-hPa zonal wind anomalies from phase 2 to 7.
Fig. 3.5. Surface precipitation and 500-hPa zonal wind anomalies from phase 2 to 7.
Fig. 3.6. Surface precipitation and 200-hPa zonal wind anomalies from phase 2 to 7.
Fig. 4.1. Vorticity and divergence anomalies at 850-hPa from phase 2 to 7.
Fig. 4.2. Vorticity and divergence anomalies at 200-hPa from phase 2 to 7.
Fig. 4.3. Cross sections of zonal wind, vorticity, and meridional circulation anomalies.
Fig. 4.4. Cross sections of vertical velocity anomalies and zonal streamlines.
Fig. 4.5. Zonally-smoothed variables from Fig. 4.4
Fig. 5.1. High, middle, and low cloud amount anomalies from phase 1 to 3.
Fig. 5.2. High, middle, and low cloud amount anomalies from phase 4 to 6.
Fig. 5.3. High, middle, and low cloud amount anomalies from phase 7 to 9.
Fig. 5.4. Schematic diagram of the MJO cloud structure from 3-D perspective.
Fig. 5.5. Cirrus amount and OLR anomalies from phase 1 to 7.
Fig. 5.6. Cirrus amount anomalies at phase 5 and 6.
Fig. 6.1. Convective percentage of TMI in six areas from phase 1 to 9.
Fig. 6.2. Composites of precipitation anomaly of TRMM PR at 0, 155˚E.
Fig. 6.3. Cross sections of Q1, Q2, and circulation anomalies at 100˚E from phase 2 to 5.
Fig. 6.4. Cross sections of Q1, Q2, and circulation anomalies at 130˚E from phase 3 to 6.
Fig. 6.5. Cross sections of Q1, Q2, and circulation anomalies at 160˚E from phase 4 to 7.
Fig. 6.6. Heating profiles of COARE IFA observation and seven models.
Fig. 6.7 Evolution of MJO heating profile when passing through the Maritime Continent.
Fig. 6.8. Total-sky longwave radiation flux and OLR anomalies from phase 1 to 7.
Fig. 6.9. Total-sky shortwave radiation flux and OLR anomalies from phase 1 to 7.
Fig. 6.10. Surface radiative and turbulent flux anomalies from phase 3 to 6.
Fig. 6.11. TMI sea surface temperature and 10-m wind anomalies from phase 2 to 7.
Fig. A1. Cross sections of zonal wind, vorticity, and circulation anomalies of JRA25.
Fig. A2. Cross sections of zonal wind, vorticity, and circulation anomalies of NCEP.
Fig. A3. Cross sections of vertical velocity anomalies and zonal streamlines of JRA25.
Fig. A4. Cross sections of vertical velocity anomalies and zonal streamlines of NCEP.
Fig. A5. QuikSCAT surface wind and TRMM surface precipitation anomalies.
Fig. B1. Goepotential height and wind anomalies at 850-hPa from phase 1 to 3.
Fig. B2. Goepotential height and wind anomalies at 850-hPa from phase 4 to 6.
Fig. B3. Goepotential height and wind anomalies at 850-hPa from phase 7 to 9.
Fig. D1. Low cloud amount anomalies with significance test from phase 1 to 9
dc.language.isoen
dc.subject季內震盪zh_TW
dc.subject地形zh_TW
dc.subject海洋大陸zh_TW
dc.subject動力zh_TW
dc.subject熱力zh_TW
dc.subject雲結構zh_TW
dc.subjectclouden
dc.subjecttopographic effectsen
dc.subjectMJOen
dc.subjectMaritime Continenten
dc.subjectdynamicsen
dc.subjectheating profilesen
dc.title海洋大陸對季內震盪產生的地形效應:
動力機制以及熱力與雲結構之研究
zh_TW
dc.titleTopographic Effects on the MJO in the Maritime Continent:
Aspects of Dynamics, Heating Profiles, and Cloud Distribution
en
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee柯文雄,周明達,林和,周佳,盧孟明,鄒治華
dc.subject.keyword海洋大陸,季內震盪,地形,動力,熱力,雲結構,zh_TW
dc.subject.keywordtopographic effects,MJO,Maritime Continent,dynamics,heating profiles,cloud,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2010-02-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
11.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved