Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4521
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor龐飛
dc.contributor.authorHue-Ying Chiouen
dc.contributor.author邱慧英zh_TW
dc.date.accessioned2021-05-14T17:42:57Z-
dc.date.available2015-10-31
dc.date.available2021-05-14T17:42:57Z-
dc.date.copyright2015-08-16
dc.date.issued2015
dc.date.submitted2015-08-13
dc.identifier.citationChapter I
Abreu, C. C., Nakayama, P. A., Nogueira, C. I., Mesquita, L. P., Lopes, P. F., Wouters, F., Varaschin, M. S. and Bezerra, P. S., Jr. (2014). Histopathology and immunohistochemistry of tissues outside central nervous system in bovine rabies. J Neurovirol, 20, 388-397.
Balachandran, A. and Charlton, K. (1994). Experimental rabies infection of non-nervous tissues in skunks (Mephitis mephitis) and foxes (Vulpes vulpes). Vet Pathol, 31, 93-102.
Barbosa, T. F., Medeiros, D. B., Travassos da Rosa, E. S., Casseb, L. M., Medeiros, R., Pereira Ade, S., Vallinoto, A. C., Vallinoto, M., Begot, A. L., Lima, R. J., Vasconcelos, P. F. and Nunes, M. R. (2008). Molecular epidemiology of rabies virus isolated from different sources during a bat-transmitted human outbreak occurring in Augusto Correa municipality, Brazilian Amazon. Virology, 370, 228-236.
Barnard, B. J. (1979). The role played by wildlife in the epizootiology of rabies in South Africa and South-West Africa. Onderstepoort J Vet Res, 46, 155-163.
Bundza, A. and Charlton, K. M. (1988). Comparison of spongiform lesions in experimental scrapie and rabies in skunks. Acta Neuropathol, 76, 275-280.
Charlton, K. M. (1984). Rabies: spongiform lesions in the brain. Acta Neuropathol, 63, 198-202.
Charlton, K. M., Casey, G. A. and Campbell, J. B. (1983). Experimental rabies in skunks: mechanisms of infection of the salivary glands. Can J Comp Med, 47, 363-369.
Charlton, K. M., Casey, G. A. and Campbell, J. B. (1987a). Experimental rabies in skunks: immune response and salivary gland infection. Comp Immunol Microbiol Infect Dis, 10, 227-235.
Charlton, K. M., Casey, G. A., Webster, W. A. and Bundza, A. (1987b). Experimental rabies in skunks and foxes. Pathogenesis of the spongiform lesions. Lab Invest, 57, 634-645.
Chiou, H. Y., Hsieh, C. H., Jeng, C. R., Chan, F. T., Wang, H. Y. and Pang, V. F. (2014). Molecular characterization of cryptically circulating rabies virus from ferret badgers, Taiwan. Emerg Infect Dis, 20, 790-798.
Cowling, B. J., Jin, L., Lau, E. H., Liao, Q., Wu, P., Jiang, H., Tsang, T. K., Zheng, J., Fang, V. J., Chang, Z., Ni, M. Y., Zhang, Q., Ip, D. K., Yu, J., Li, Y., Wang, L., Tu, W., Meng, L., Wu, J. T., Luo, H., Li, Q., Shu, Y., Li, Z., Feng, Z., Yang, W., Wang, Y., Leung, G. M. and Yu, H. (2013). Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. Lancet, 382, 129-137.
Cox-Witton, K., Reiss, A., Woods, R., Grillo, V., Baker, R. T., Blyde, D. J., Boardman, W., Cutter, S., Lacasse, C., McCracken, H., Pyne, M., Smith, I., Vitali, S., Vogelnest, L., Wedd, D., Phillips, M., Bunn, C. and Post, L. (2014). Emerging infectious diseases in free-ranging wildlife-Australian zoo based wildlife hospitals contribute to national surveillance. PLoS One, 9, e95127.
Daszak, P., Cunningham, A. A. and Hyatt, A. D. (2000). Emerging infectious diseases of wildlife--threats to biodiversity and human health. Science, 287, 443-449.
Dehove, A. (2010). One world, one health. Transbound Emerg Dis, 57, 3-6.
Dietzschold, B., Wunner, W. H., Wiktor, T. J., Lopes, A. D., Lafon, M., Smith, C. L. and Koprowski, H. (1983). Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci U S A, 80, 70-74.
Gigant, B., Iseni, F., Gaudin, Y., Knossow, M. and Blondel, D. (2000). Neither phosphorylation nor the amino-terminal part of rabies virus phosphoprotein is required for its oligomerization. J Gen Virol, 81, 1757-1761.
Hamir, A. N., Moser, G. and Rupprecht, C. E. (1992). Morphologic and immunoperoxidase study of neurologic lesions in naturally acquired rabies of raccoons. J Vet Diagn Invest, 4, 369-373.
Hamir, A. N., Niezgoda, M. and Rupprecht, C. E. (2011). Recovery from and clearance of rabies virus in a domestic ferret. J Am Assoc Lab Anim Sci, 50, 248-251.
Holmes, E. C., Woelk, C. H., Kassis, R. and Bourhy, H. (2002). Genetic constraints and the adaptive evolution of rabies virus in nature. Virology, 292, 247-257.
Jackson, A. C. and Fu, Z. F. (2013). Pathogenesis. In: Rabies, A. C. Jackson and W. H. Wunner, Eds, Elsevier Academic Press, pp. 299-349.
Kauffman, F. H. and Goldmann, B. J. (1986). Rabies. Am J Emerg Med, 4, 525-531.
Krebs, J. W., Wheeling, J. T. and Childs, J. E. (2003a). Rabies surveillance in the United States during 2002. J Am Vet Med Assoc, 223, 1736-1748.
Krebs, J. W., Williams, S. M., Smith, J. S., Rupprecht, C. E. and Childs, J. E. (2003b). Rabies among infrequently reported mammalian carnivores in the United States, 1960-2000. J Wildl Dis, 39, 253-261.
Kuzmin, I. V., Shi, M., Orciari, L. A., Yager, P. A., Velasco-Villa, A., Kuzmina, N. A., Streicker, D. G., Bergman, D. L. and Rupprecht, C. E. (2012). Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001-2009. PLoS Pathog, 8, e1002786.
Leong, H. K., Goh, C. S., Chew, S. T., Lim, C. W., Lin, Y. N., Chang, S. F., Yap, H. H. and Chua, S. B. (2008). Prevention and control of avian influenza in Singapore. Ann Acad Med Singapore, 37, 504-509.
Leroy, E. M., Rouquet, P., Formenty, P., Souquiere, S., Kilbourne, A., Froment, J. M., Bermejo, M., Smit, S., Karesh, W., Swanepoel, R., Zaki, S. R. and Rollin, P. E. (2004). Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science, 303, 387-390.
Li, Q., Zhou, L., Zhou, M., Chen, Z., Li, F., Wu, H., Xiang, N., Chen, E., Tang, F., Wang, D., Meng, L., Hong, Z., Tu, W., Cao, Y., Li, L., Ding, F., Liu, B., Wang, M., Xie, R., Gao, R., Li, X., Bai, T., Zou, S., He, J., Hu, J., Xu, Y., Chai, C., Wang, S., Gao, Y., Jin, L., Zhang, Y., Luo, H., Yu, H., He, J., Li, Q., Wang, X., Gao, L., Pang, X., Liu, G., Yan, Y., Yuan, H., Shu, Y., Yang, W., Wang, Y., Wu, F., Uyeki, T. M. and Feng, Z. (2014). Epidemiology of human infections with avian influenza A(H7N9) virus in China. N Engl J Med, 370, 520-532.
Liu, C.H. (2013). History of Rabies Control in Taiwan and China. Taiwan E B, 29:S44-S52.
Liu, Y., Zhang, S., Wu, X., Zhao, J., Hou, Y., Zhang, F., Velasco-Villa, A., Rupprecht, C. E. and Hu, R. (2010). Ferret badger rabies origin and its revisited importance as potential source of rabies transmission in Southeast China. BMC Infect Dis, 10, 234.
Morimoto, K., Hooper, D. C., Spitsin, S., Koprowski, H. and Dietzschold, B. (1999). Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J Virol, 73, 510-518.
Nagaraja, T., Madhusudana, S. and Desai, A. (2008). Molecular characterization of the full-length genome of a rabies virus isolate from India. Virus Genes, 36, 449-459.
Raux, H., Flamand, A. and Blondel, D. (2000). Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol, 74, 10212-10216.
Sartore, S., Bonfanti, L., Lorenzetto, M., Cecchinato, M. and Marangon, S. (2010). The effects of control measures on the economic burden associated with epidemics of avian influenza in Italy. Poult Sci, 89, 1115-1121.
Stallknecht, D. E. (2007). Impediments to wildlife disease surveillance, research, and diagnostics. Curr Top Microbiol Immunol, 315, 445-461.
Stein, L. T., Rech, R. R., Harrison, L. and Brown, C. C. (2010). Immunohistochemical study of rabies virus within the central nervous system of domestic and wildlife species. Vet Pathol, 47, 630-633.
Tuffereau, C., Leblois, H., Benejean, J., Coulon, P., Lafay, F. and Flamand, A. (1989). Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology, 172, 206-212.
Wandeler, A., Muller, J., Wachendorfer, G., Schale, W., Forster, U. and Steck, F. (1974a). Rabies in wild carnivores in central Europe. III. Ecology and biology of the fox in relation to control operations. Zentralbl Veterinarmed B, 21, 765-773.
Wandeler, A., Wachendorfer, G., Forster, U., Krekel, H., Muller, J. and Steck, F. (1974b). Rabies in wild carnivores in central Europe. II. Virological and serological examinations. Zentralbl Veterinarmed B, 21, 757-764.
Wandeler, A., Wachendorfer, G., Forster, U., Krekel, H., Schale, W., Muller, J. and Steck, F. (1974c). Rabies in wild carnivores in central Europe. I. Epidemiological studies. Zentralbl Veterinarmed B, 21, 735-756.
Warrell, M. J. and Warrell, D. A. (2004). Rabies and other lyssavirus diseases. Lancet, 363, 959-969.
World Health, O. (2013). WHO Expert Consultation on Rabies. Second report. World Health Organ Tech Rep Ser, 1-139, back cover.
Wu, H., Chang, S. S., Tsai, H. J., Wallace, R. M., Recuenco, S. E., Doty, J. B., Vora, N. M., Chang, F. Y., Eis officer, C. D. C., Centers for Disease, C. and Prevention. (2014). Notes from the field: wildlife rabies on an island free from canine rabies for 52 years--Taiwan, 2013. MMWR Morb Mortal Wkly Rep, 63, 178.
Wunner, W. H. and Conzelmann, K. K. (2013). Rabies virus. In: Rabies, A. C. Jackson, Ed, Elsevier Academic Press, pp. 17-60.
Yang, J., Koprowski, H., Dietzschold, B. and Fu, Z. F. (1999). Phosphorylation of rabies virus nucleoprotein regulates viral RNA transcription and replication by modulating leader RNA encapsidation. J Virol, 73, 1661-1664.
Yousaf, M. Z., Qasim, M., Zia, S., Khan, M., Ashfaq, U. A. and Khan, S. (2012). Rabies molecular virology, diagnosis, prevention and treatment. Virol J, 9, 50.
Zhang, S., Tang, Q., Wu, X., Liu, Y., Zhang, F., Rupprecht, C. E. and Hu, R. (2009). Rabies in ferret badgers, southeastern China. Emerg Infect Dis, 15, 946-949.
Zhenyu, G., Zhen, W., Enfu, C., Fan, H., Junfen, L., Yixin, L., Gangqiang, D. and Fontaine, R. E. (2007). Human rabies cluster following badger bites, People's Republic of China. Emerg Infect Dis, 13, 1956-1957.
Chapter II
1.Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife--threats to biodiversity and human health. Science 287:443-449, 2000.
2.Woodford MH. Veterinary aspects of ecological monitoring: the natural history of emerging infectious diseases of humans, domestic animals and wildlife. Trop Anim Health Prod 41:1023-1033, 2009.
3.Daszak P, Cunningham AA, Hyatt AD. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 78:103-116, 2001.
4.Daszak P, Tabor GM, Kilpatrick AM, et al. Conservation medicine and a new agenda for emerging diseases. Ann N Y Acad Sci 1026:1-11, 2004.
5.Leroy EM, Rouquet P, Formenty P, et al. Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science 303:387-390, 2004.
6.Barbosa TF, Medeiros DB, Travassos da Rosa ES, et al. Molecular epidemiology of rabies virus isolated from different sources during a bat-transmitted human outbreak occurring in Augusto Correa municipality, Brazilian Amazon. Virology 370:228-236, 2008.
7.Wandeler A. Virus infections of non-domestic carnivores: rabies virus. In: Virus Infections of Carnivores: Elsevier Science Publishers, 1987.
8.World Health O. WHO Expert Consultation on Rabies. Second report. World Health Organ Tech Rep Ser 1-139, back cover, 2013.
9.Sartore S, Bonfanti L, Lorenzetto M, et al. The effects of control measures on the economic burden associated with epidemics of avian influenza in Italy. Poult Sci 89:1115-1121, 2010.
10.Leong HK, Goh CS, Chew ST, et al. Prevention and control of avian influenza in Singapore. Ann Acad Med Singapore 37:504-509, 2008.
11.Li Q, Zhou L, Zhou M, et al. Epidemiology of human infections with avian influenza A(H7N9) virus in China. N Engl J Med 370:520-532, 2014.
12.Cowling BJ, Jin L, Lau EH, et al. Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. Lancet 382:129-137, 2013.
13.Cox-Witton K, Reiss A, Woods R, et al. Emerging infectious diseases in free-ranging wildlife-Australian zoo based wildlife hospitals contribute to national surveillance. PLoS One 9:e95127, 2014.
14.Stallknecht DE. Impediments to wildlife disease surveillance, research, and diagnostics. Curr Top Microbiol Immunol 315:445-461, 2007.
15.Heisey DM, Jennelle CS, Russell RE, et al. Using auxiliary information to improve wildlife disease surveillance when infected animals are not detected: a Bayesian approach. PLoS One 9:e89843, 2014.
16.Duncan C, Backus L, Lynn T, et al. Passive, opportunistic wildlife disease surveillance in the Rocky Mountain Region, USA. Transbound Emerg Dis 55:308-314, 2008.
17.Liu Y, Zhang S, Wu X, et al. Ferret badger rabies origin and its revisited importance as potential source of rabies transmission in Southeast China. BMC Infect Dis 10:234, 2010.
18.Mochizuki M, Hashimoto M, Hagiwara S, et al. Genotypes of canine distemper virus determined by analysis of the hemagglutinin genes of recent isolates from dogs in Japan. J Clin Microbiol 37:2936-2942, 1999.
19.Qvarnstrom Y, Sullivan JJ, Bishop HS, et al. PCR-based detection of Angiostrongylus cantonensis in tissue and mucus secretions from molluscan hosts. Appl Environ Microbiol 73:1415-1419, 2007.
20.Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680, 1994.
21.Chiou HY, Hsieh CH, Jeng CR, et al. Molecular characterization of cryptically circulating rabies virus from ferret badgers, Taiwan. Emerg Infect Dis 20:790-798, 2014.
22.Martella V, Elia G, Buonavoglia C. Canine distemper virus. Vet Clin North Am Small Anim Pract 38:787-797, vii-viii, 2008.
23.Beineke A, Puff C, Seehusen F, et al. Pathogenesis and immunopathology of systemic and nervous canine distemper. Vet Immunol Immunopathol 127:1-18, 2009.
24.Terio KA, Craft ME. Canine distemper virus (CDV) in another big cat: should CDV be renamed carnivore distemper virus? MBio 4:e00702-00713, 2013.
25.Ikeda Y, Nakamura K, Miyazawa T, et al. Seroprevalence of canine distemper virus in cats. Clin Diagn Lab Immunol 8:641-644, 2001.
26.Chen CC, Pei KJ, Liao MH, et al. Canine distemper virus in wild ferret-badgers of Taiwan. J Wildl Dis 44:440-445, 2008.
27.Schulz W. [Exudative epidermitis of the piglet (piglet eczema)--etiology and pathogenesis with special reference to Staphylococcus hyicus. I. Literature review]. Monatsh Veterinarmed 25:428-435, 1970.
28.Amtsberg G. [Animal experimental studies on the pathogenesis of localized and generalized swine exudative eczema and polyarthritis due to Staphylococcus hyicus]. Dtsch Tierarztl Wochenschr 85:433-438, 1978.
29.Phillips WE, Jr., King RE, Kloos WE. Isolation of Staphylococcus hyicus subsp hyicus from a pig with septic polyarthritis. Am J Vet Res 41:274-276, 1980.
30.Roberson JR, Fox LK, Hancock DD, et al. Prevalence of coagulase-positive staphylococci, other than Staphylococcus aureus, in bovine mastitis. Am J Vet Res 57:54-58, 1996.
31.Osterlund A, Nordlund E. Wound infection caused by Staphylococcus hyicus subspecies hyicus after a donkey bite. Scand J Infect Dis 29:95, 1997.
32.Casanova C, Iselin L, von Steiger N, et al. Staphylococcus hyicus bacteremia in a farmer. J Clin Microbiol49:4377-4378, 2011.
33.Carreno RA, Nadler SA. Phylogenetic analysis of the Metastrongyloidea (Nematoda: Strongylida) inferred from ribosomal RNA gene sequences. J Parasitol 89:965-973, 2003.
34.OuYang L, Wei J, Wu Z, et al. Differences of larval development and pathological changes in permissive and nonpermissive rodent hosts for Angiostrongylus cantonensis infection. Parasitol Res111:1547-1557, 2012.
35.Davidson RK, Handeland K, Gjerde B. The first report of Aelurostrongylus falciformis in Norwegian badgers (Meles meles). Acta Vet Scand 48:6, 2006.
36.Alic A, Hodzic A, Kadric M, et al. Pearsonema plica (Capillaria plica) infection and associated urinary bladder pathology in red foxes (Vulpes vulpes) from Bosnia and Herzegovina. Parasitol Res 114:1933-1938, 2015.
37.Nimmervoll H, Hoby S, Robert N, et al. Pathology of sarcoptic mange in red foxes (Vulpes vulpes): macroscopic and histologic characterization of three disease stages. J Wildl Dis 49:91-102, 2013.
38.Chen CC, Pei KJ, Lai YC, et al. Participatory epidemiology to assess sarcoptic mange in serow of Taiwan. J Wildl Dis 48:869-875, 2012.
39.Feldman SH, Ramirez MP. Molecular Phylogeny of Pseudocapillaroides xenopi (Moravec et Cosgrov 1982) and Development of a Quantitative PCR Assay for its Detection in Aquarium Sediment. J Am Assoc Lab Anim Sci 53:668-674, 2014.
40.Iglauer F, Willmann F, Hilken G, et al. Anthelmintic treatment to eradicate cutaneous capillariasis in a colony of South African clawed frogs (Xenopus laevis). Lab Anim Sci 47:477-482, 1997.
41.Ramiro-Ibanez F, Winston J, O'Donnell E, et al. Ulcerative pododermatitis in a cat associated with Anatrichosoma sp. J Vet Diagn Invest 14:80-83, 2002.
42.Noden BH, Du Plessis EC, Morkel C, et al. Anatrichosoma sp. in the footpads of a cat: diagnosis and pathology of Namibian case. Vet Parasitol 191:386-389, 2013.
43.Nunez FA. Trichuris, Capillaria or Anatrichosoma? [corrected]. Parasitol Int 59:303, 2010.
Chapter III
Balachandran A, Charlton K. 1994. Experimental rabies infection of non-nervous tissues in skunks (Mephitis mephitis) and foxes (Vulpes vulpes). Vet Pathol 31:93-102.
Blanton JD, Hanlon CA, Rupprecht CE. 2007. Rabies surveillance in the United States during 2006. J Am Vet Med Assoc 231:540-556.
Bourhy H, Reynes JM, Dunham EJ, Dacheux L, Larrous F, Huong VT, Xu G, Yan J, Miranda ME, Holmes EC, 2008. The origin and phylogeography of dog rabies virus. J Gen Virol 89:2673-2681.
Charlton KM. 1984. Rabies: spongiform lesions in the brain. Acta. Neuropathologica. 63, 198-202.
Charlton KM, Casey GA, Webster WA, Bundza A. 1987. Experimental rabies in skunks and foxes. Pathogenesis of the spongiform lesions. Lab Invest 57:634-645.
Chen CC, Pei KJ, Liao MH, Mortenson JA. 2008. Canine distemper virus in wild ferret-badgers of Taiwan. J Wildl Dis 44:440-445.
Chiou HY, Hsieh CH, Jeng CR, Chan FT, Wang HY, Pang VF. 2014. Molecular characterization of cryptically circulating rabies virus from ferret badgers, Taiwan. Emerg Infect Dis 20:790-798.
Fèvre EM, Bronsvoort BM, Hamilton KA, Cleaveland S. 2006. Animal movements and the spread of infectious diseases. Trends Microbiol 14:125-131.
Foley GL, Zachary JF. 1995. Rabies-induced spongiform change and encephalitis in a heifer. Vet Pathol 32:309-311.
Hamir AN. 2011. Pathology of neurologic disorders of raccoons (Procyon lotor). J Vet Diagn Invest 23:873-884.
Hamir AN, Moser G, Rupprecht CE. 1992. Morphologic and immunoperoxidase study of neurologic lesions in naturally acquired rabies of raccoons. J Vet Diagn Invest 4:369-373.
Hamir AN, Niezgoda M, Rupprecht CE. 2011. Recovery from and clearance of rabies virus in a domestic ferret. J Am Assoc Lab Anim Sci 50:248-251.
Hicks DJ, Nunez A, Healy DM, Brookes SM, Johnson N, Fooks AR. 2009. Comparative pathological study of the murine brain after experimental infection with classical rabies virus and European bat lyssaviruses. J Comp Pathol 140:113-126.
Jackson AC, Fu ZF. 2013. Pathogenesis. In: Rabies, Jackson AC editor. London: Elsevier Academic Press, pp.299-349.
Jackson AC. 2008. Rabies. Neurol Clin 26:717-726, ix.
Jackson AC, Ye H, Ridaura-Sanz C, Lopez-Corella E. 2001. Quantitative study of the infection in brain neurons in human rabies. J Med Virol 65:614-618.
Krebs JW, Wheeling JT, Childs JE. 2003. Rabies surveillance in the United States during 2002. J Am Vet Med Assoc 223:1736-1748.
Liu Y, Zhang SF, Wu XF, Zhao JH, Hou YL, Zhang F, Velasco-Villa A, Rupprecht CE, Hu RL. 2010. Ferret badger rabies origin and its revisited importance as potential source of rabies transmission in Southeast China. BMC Infect Dis 10:234.
Maxie MG, Youssef S. 2007. Nervous system. In: Jubb, Kennedy, and Palmer's Pathology of Domestic Animals. Volume 1, Edited by Maxie MG. Elsevier, Philadelphia, PA, pp.286-458.
Naze F, Suin V, Lamoral S, Francart A, Brochier B, Roels S, Mast J, Kalai M, Van Gucht S. 2013. Infectivity of rabies virus-exposed macrophages. Microbes Infect 15:115-125.
Smith GC. 2002. The role of the Badger (Meles meles) in rabies epizootiology and the implications for Great Britain. Mammal Rev 32:12-25.
Smith GC, Wilkinson D. 2002. Modelling disease spread in a novel host: rabies in the European badger Meles meles. J Appl Ecol 39:865-874.
Stein LT, Rech RR, Harrison L, Brown CC. 2010. Immunohistochemical study of rabies virus within the central nervous system of domestic and wildlife species. Vet Pathol 47:630-636.
Wacharapluesadee S, Ruangvejvorachai P, Hemachudha T. 2006. A simple method for detection of rabies viral sequences in 16-year old archival brain specimens with one-week fixation in formalin. J Virol Methods 134:267-271.
Wandeler A. 1987. Virus infections of non-domestic carnivores: rabies virus. In: Appel M.J. (ed), Virus Infections of Carnivores. Amsterdam: Elsevier Science Publishers, pp. 449-461.
WHO. 2013. WHO Expert Consultation on Rabies: second report. Geneva: The Organization. WHO Technical Report Series, No. 982, pp. 1-139.
Zhang SF, Tang Q, Wu XF, Liu Y, Zhang F, Rupprecht CE, Hu RL. 2009. Rabies in Ferret Badgers, Southeastern China. Emerg Infect Dis 15:946-949.
Chapter IV
1. Jackson A, Wunner, WH. Pathogenesis. In:Rabies. London: Elsevier Academic Press; 2007.
2. Organization WH. WHO Expert Consultation on Rabies: second report: The Organization; 2013.
3. Wandeler A. Virus infections of non-domestic carnivores: rabies virus. In: Virus Infections of Carnivores: Elsevier Science Publishers; 1987.
4. Barnard BJH. The role played by wildlife in the epizootiology of rabies in South-Africa and Southwest Africa. Onderstepoort J Vet Res. 1979;46:155-63.
5. Smith GC, Wilkinson D. Modelling disease spread in a novel host: rabies in the European badger Meles meles. J Appl Ecol. 2002;39:865-74.
6. Wandeler A, Wachendorfer G, Forster U, Krekel H, Muller J, Steck F. Rabies in wild carnivores in central Europe. II. Virological and serological examinations. Zentralbl Veterinarmed B. 1974;21:757-64.
7. Liu Y, Zhang SF, Wu XF, Zhao JH, Hou YL, Zhang F, et al. Ferret badger rabies origin and its revisited importance as potential source of rabies transmission in Southeast China. BMC Infect Dis. 2010;10:234.
8. Zhenyu G, Zhen W, Enfu C, Fan H, Junfen L, Yixin L, et al. Human rabies cluster following badger bites, People’s Republic of China. Emerg Infect Dis. 2007;13:1955-7.
9. Zhang SF, Tang Q, Wu XF, Liu Y, Zhang F, Rupprecht CE, et al. Rabies in Ferret Badgers, Southeastern China. Emerg Infect Dis. 2009;15:946-9.
10. Lei YL, Wang XG, Liu FM, Chen XY, Ye BF, Mei JH, et al. Complete genome sequencing and analyses of rabies viruses isolated from wild animals (Chinese Ferret-Badger) in Zhejiang province [in Chinese]. Chin J Epidemiol. 2009;30:824-8.
11. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673-80.
12. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731-9.
13. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451-2.
14. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585-95.
15. Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693-709.
16. He CQ, Meng SL, Yan HY, Ding NZ, He HB, Yan JX, et al. Isolation and identification of a novel rabies virus lineage in China with natural recombinant nucleoprotein gene. PloS one. 2012;7:e49992.
17. Bourhy H, Reynes JM, Dunham EJ, Dacheux L, Larrous F, Huong VT, et al. The origin and phylogeography of dog rabies virus. J Gen Virol. 2008;89:2673-81.
18. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696-704.
19. Posada D. jModelTest: phylogenetic model averaging. Mol Biol and Evol. 2008;25:1253-6.
20. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572-4.
21. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969-73.
22. Drummond AJ, Ho SY, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88.
23. Meng S, Sun Y, Wu X, Tang J, Xu G, Lei Y, et al. Evolutionary dynamics of rabies viruses highlights the importance of China rabies transmission in Asia. Virology. 2011;410:403-9.
24. Kissi B, Tordo N, Bourhy H. Genetic polymorphism in the rabies virus nucleoprotein gene. Virology. 1995;209:526-37.
25. Mebatsion T, Weiland F, Conzelmann KK. Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G. J Virol. 1999;73:242-50.
26. Finke S, Mueller-Waldeck R, Conzelmann KK. Rabies virus matrix protein regulates the balance of virus transcription and replication. J Gen Virol. 2003;84:1613-21.
27. Kassis R, Larrous F, Estaquier J, Bourhy H. Lyssavirus matrix protein induces apoptosis by a TRAIL-dependent mechanism involving caspase-8 activation. J Virol. 2004;78:6543-55.
28. Lentz TL, Wilson PT, Hawrot E, Speicher DW. Amino-Acid-Sequence Similarity between Rabies Virus Glycoprotein and Snake-Venom Curaremimetic Neurotoxins. Science. 1984;226:847-8.
29. Poch O, Blumberg BM, Bougueleret L, Tordo N. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol. 1990;71:1153-62.
30. Kuzmin IV, Wu X, Tordo N, Rupprecht CE. Complete genomes of Aravan, Khujand, Irkut and West Caucasian bat viruses, with special attention to the polymerase gene and non-coding regions. Virus Res. 2008;136:81-90.
31. Zhang S, Zhao J, Liu Y, Fooks AR, Zhang F, Hu R. Characterization of a rabies virus isolate from a ferret badger (Melogale moschata) with unique molecular differences in glycoprotein antigenic site III. Virus Res. 2010;149:143-51.
32. Gong W, Jiang Y, Za Y, Zeng Z, Shao M, Fan J, et al. Temporal and spatial dynamics of rabies viruses in China and Southeast Asia. Virus Res. 2010;150:111-8.
33. Saito M, Oshitani H, Orbina JR, Tohma K, de Guzman AS, Kamigaki T, et al. Genetic diversity and geographic distribution of genetically distinct rabies viruses in the Philippines. PLoS Negl Trop Dis. 2013;7:e2144.
34. Streicker DG, Lemey P, Velasco-Villa A, Rupprecht CE. Rates of viral evolution are linked to host geography in bat rabies. PLoS pathog. 2012;8:e1002720.
35. Biek R, Henderson JC, Waller LA, Rupprecht CE, Real LA. A high-resolution genetic signature of demographic and spatial expansion in epizootic rabies virus. Proc Natl Acad Sci United States USA. 2007;104:7993-8.
36. Faber M, Faber ML, Papaneri A, Bette M, Weihe E, Dietzschold B, et al. A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J Virol. 2005;79:14141-8.
37. Faber M, Li J, Kean RB, Hooper DC, Alugupalli KR, Dietzschold B. Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc Natl Acad Sci USA. 2009;106:11300-5.
38. Lafon M. Rabies virus receptors. J Neurovirol. 2005;11:82-7.
39. Tuffereau C, Schmidt K, Langevin C, Lafay F, Dechant G, Koltzenburg M. The rabies virus glycoprotein receptor p75NTR is not essential for rabies virus infection. J Virol. 2007;81:13622-30.
40. Kuzmin IV, Shi M, Orciari LA, Yager PA, Velasco-Villa A, Kuzmina NA, et al. Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001-2009. PLoS pathog. 2012;8:e1002786.
Chapter V
Burkel, M. D., Andrews, M. F. and Meslow, E. C. (1970). Rabies detection in road-killed skunks (Mephitis mephitis). J Wildl Dis, 6, 496-499.
Chen, C. C., Pei, K. J., Liao, M. H. and Mortenson, J. A. (2008). Canine distemper virus in wild ferret-badgers of Taiwan. J Wildl Dis, 44, 440-445.
Chiou, H. Y., Hsieh, C. H., Jeng, C. R., Chan, F. T., Wang, H. Y. and Pang, V. F. (2014). Molecular characterization of cryptically circulating rabies virus from ferret badgers, Taiwan. Emerg Infect Dis, 20, 790-798.
Daszak, P., Tabor, G. M., Kilpatrick, A. M., Epstein, J. and Plowright, R. (2004). Conservation medicine and a new agenda for emerging diseases. Ann N Y Acad Sci, 1026, 1-11.
Faber, M., Faber, M. L., Papaneri, A., Bette, M., Weihe, E., Dietzschold, B. and Schnell, M. J. (2005). A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J Virol, 79, 14141-14148.
Faber, M., Li, J., Kean, R. B., Hooper, D. C., Alugupalli, K. R. and Dietzschold, B. (2009). Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc Natl Acad Sci U S A, 106, 11300-11305.
Hamir, A. N. (2011). Pathology of neurologic disorders of raccoons (Procyon lotor). J Vet Diagn Invest, 23, 873-884.
Hamir, A. N., Moser, G. and Rupprecht, C. E. (1992a). A five year (1985-1989) retrospective study of equine neurological diseases with special reference to rabies. J Comp Pathol, 106, 411-421.
Hamir, A. N., Moser, G. and Rupprecht, C. E. (1992b). Morphologic and immunoperoxidase study of neurologic lesions in naturally acquired rabies of raccoons. J Vet Diagn Invest, 4, 369-373.
Jackson, A. C., Ye, H., Ridaura-Sanz, C. and Lopez-Corella, E. (2001). Quantitative study of the infection in brain neurons in human rabies. J Med Virol, 65, 614-618.
Kuzmin, I. V., Shi, M., Orciari, L. A., Yager, P. A., Velasco-Villa, A., Kuzmina, N. A., Streicker, D. G., Bergman, D. L. and Rupprecht, C. E. (2012). Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001-2009. PLoS Pathog, 8, e1002786.
Stein, L. T., Rech, R. R., Harrison, L. and Brown, C. C. (2010). Immunohistochemical study of rabies virus within the central nervous system of domestic and wildlife species. Vet Pathol, 47, 630-633.
Tobiume, M., Sato, Y., Katano, H., Nakajima, N., Tanaka, K., Noguchi, A., Inoue, S., Hasegawa, H., Iwasa, Y., Tanaka, J., Hayashi, H., Yoshida, S., Kurane, I. and Sata, T. (2009). Rabies virus dissemination in neural tissues of autopsy cases due to rabies imported into Japan from the Philippines: immunohistochemistry. Pathol Int, 59, 555-566.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4521-
dc.description.abstract本研究的目的是調查台灣野生食肉目動物死亡與潛在病因,並針對發現的重要或有趣的疾病進行深入研究。在2011年8月至2015年1月期間共收集51例救傷死亡或路死的食肉目動物屍體,經由詳細解剖與組織病理學檢查、分子與免疫學分析、微生物學及寄生蟲學檢測等進行病因分析。這些案例包括31例台灣鼬獾(TWFBs) (Melogale moschata subaurantiaca)、12例白鼻心(MPCs) (Paguma larvate taivana)、5例麝香貓(SCCs) (Viverricula indica pallida)及3例食蟹獴(CEMs) (Herpestes urva)。人畜共通狂犬病與致死性犬瘟熱分別於4例台灣鼬獾與3例白鼻心被確診。
台灣鼬獾狂犬病的特徵性病理變化為非化膿性腦膜腦脊髓炎、神經節炎及形成典型的細胞質內包涵體- Negri bodies,受影響的中樞神經系統以腦幹病變最為嚴重。此外,大腦皮質部、丘腦與腦幹的神經元與神經氈具有不同程度的海綿狀變性。在非神經組織的代表性病變包括腎上腺壞死與間質淋巴球性唾液腺炎。經由免疫組織化學染色法(IHC)與螢光抗體試驗(FAT),病毒抗原可在神經組織的神經元細胞與軸突/樹突等區域,以及全身不同組織間的巨噬細胞中被偵測到。結果顯示,腦幹、大腦皮質部、海馬角、丘腦與下視丘是台灣鼬獾狂犬病分子診斷的理想的採樣區。我們利用不同單位提供的2004-2012年間福馬林固定、石蠟包埋的舊有台灣鼬獾腦組織,進行免疫組織化學染色回溯性研究,發現狂犬病陽性案例最早可追溯至2004年。
為了分析台灣鼬獾狂犬病病毒的源起,我們完成三株狂犬病病毒全基因體定序分析,並由公告的幾株狂犬病毒(RABV)核蛋白(N)與醣蛋白(G)序列進行親緣地理學分析顯示,台灣鼬獾狂犬病病毒(RABV-TWFB)來自亞洲譜系並已獨立演化,其近緣病毒株China I (包括中國鼬獾狂犬病病毒株; RABV-CNFB) 和菲律賓狂犬病病毒的分化年代在158-210年前,而台灣鼬獾狂犬病病毒株的最近共祖起源年代約在91-113年前。我們的研究顯示,此次地方性台灣鼬獾狂犬病病毒基因分析的古老親緣結果說明了台灣鼬獾的狂犬病病毒株可能隱晦的潛藏在環境中長期的慢慢傳播,而致一直未被檢出,此病毒與宿主間的交互作用及其潛存的機制值得進一步研究。
zh_TW
dc.description.abstractThe objective of this study was to investigate the causes of death and potential diseases carried by the wild-ranging carnivores in Taiwan. For those interesting and essential diseases, further studies in depths were performed. A total of 51 carcasses from rescued but dead or road-killed carnivores, collected during the period of August 2011 to January 2015, were necropsied for histopathology, molecular and immunological assays, microbiology, and parasitology. The cases included 31 Taiwan ferret badgers (TWFBs) (Melogale moschata subaurantiaca), 12 masked palm civets (MPCs) (Paguma larvate taivana), 5 small Chinese civets (SCCs) (Viverricula indica pallida), and 3 crab-eating mongooses (CEMs) (Herpestes urva). Zoonotic rabies and fatal canine distemper were diagnosed in 4 TWFBs and 3 MPCs, respectively.
The characteristic pathological changes of rabid TWFBs were nonsuppurative meningoencephalomyelitis, ganglionitis, and formation of typical intracytoplasmic Negri bodies with brain stem affected the most. Additionally, variable spongiform degeneration, primarily in the perikaryon of neurons and neuropil, was observed in the cerebral cortex, thalamus, and brain stem. In the non-nervous tissue, representative lesions included adrenal necrosis and lymphocytic interstitial sialoadenitis. By immunohistochemical (IHC) staining as well as fluorescent antibody test (FAT), positive viral antigens were detected in the perikaryon of the neurons and axonal and/or dendritic processes in the nervous tissue and in the macrophages scattered in various tissues throughout the body. The findings suggest that brain stem, cerebral cortex, hippocampus, thalamus and hypothalamus are ideal sampling regions for molecular diagnosis of RABV in TWFBs. Retrospective study using archived formalin-fixed and paraffin-embedded tissues of TWFBs revealed the earliest IHC-positive rabid TWFB case in 2004.
To examine the origin of this viral strain, we sequenced three complete genomes and acquired multiple rabies virus (RABV) nucleoprotein (N) and glycoprotein (G) sequences. Phylogeographic analyses demonstrated that the RABV of TWFB (RABV-TWFB) is a distinct lineage within the Asian group, and has been differentiated from its closest lineages, China I (including Chinese ferret badger isolates; RABV-CNFB) and Philippines, 158-210 years before present. The most recent common ancestor of RABV-TWFB was originated 91-113 years ago. The ancient origin of the endemic RABV-TWFB illustrates that this RABV variant could be cryptically circulated in the environment without being recognized for a long period of time. The underlying mechanism is worthy of further study and may shed light on the complex interaction between RABV and its host.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:42:57Z (GMT). No. of bitstreams: 1
ntu-104-D94629008-1.pdf: 3261925 bytes, checksum: 389bdd7865d53d296679a4619b805b3e (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄 Contents
摘要 I
Abstract III
Chapter I General introduction 1
Chapter II Disease Surveillance in Rescued and Road-killed Wild-Ranging Carnivores in Taiwan (Taiwan Veterinary Journal 2015, 41:1-12) 17
Chapter III Pathological Characterization and Molecular Detection of Rabies Virus in the Rabid Ferret Badgers of a Recent Outbreak in Taiwan (Journal of Wildlife Diseases, 2015, accepted) 30
Chapter IV Molecular Characterization of Cryptically Circulating Rabies Virus from Ferret Badgers, Taiwan (Emerging Infectious Diseases, 2014, 20:790-798) 64
Chapter V Conclusions 80
dc.language.isoen
dc.title台灣野生食肉目動物疾病監控調查:鼬獾狂犬病毒鑑定與特性分析首例zh_TW
dc.titleDisease Surveillance and Monitoring in Wild-Ranging Carnivores in Taiwan: The First Identification and Characterization of Rabies Virus in Ferret Badgersen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭謙仁,李維誠,鄭益謙,廖俊旺,張志成
dc.subject.keyword狂犬病,台灣鼬獾,食肉目,親緣地理學分析,zh_TW
dc.subject.keywordRabies,Taiwan ferret badger,Carnivores,Phylogeographic analyses,en
dc.relation.page86
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-13
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf3.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved