Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45196
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡元奮
dc.contributor.authorYi-Sian Wuen
dc.contributor.author吳以嫻zh_TW
dc.date.accessioned2021-06-15T04:08:25Z-
dc.date.available2015-03-12
dc.date.copyright2010-03-12
dc.date.issued2010
dc.date.submitted2010-02-04
dc.identifier.citationAmaral, D.G., Dent, J. A., 1981. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol. 195, 51-86.
Aisa, B., Tordera, R., Lasheras, B., Del Río, J., Ramírez, M. J., 2006. Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendorinology 32, 256-266.
Bale, T. L., Vale, W. W., 2003. Increased depression-like behaviors in corticotrophin-releasing factor receptor-2-deficient mice: sexually dichotomous responses. J. Neurosci. 23, 5295–5301.
Barha, C. K., Pawluski, J. L., Galea, L. A., 2007. Maternal care affects male and female offspring working memory and stress reactivity. Physiol. Behav. 92, 939-50.
Barna, I., Bálint, E., Baranyi, J., Bakos, N., Makara, G. B., Haller, J., 2003. Gender-specific effect of maternal deprivation on anxiety and corticotropin-releasing hormone mRNA expression in rats. Brain Res. Bull. 62, 85-91.
Benhamou, S., Poucet, B., 1996. A comparative analysis of spatial memory processes. Behav. Processes 35, 113-126.
Bredy, T. W., Grant, R. J., Champagne, D. L., Meaney, M. J., Maternal care influences neuronal survival in the hippocampus of the rat. Eur. J. Neurosci. 18, 2903-2909.
Bitran, D., Kellogg, C. K., Hilvers, R. J., 1993. Treatment with an anabolic-androgenic steroid affects anxiety-related behavior and alters the sensitivity of cortical GABA A receptors in the rat. Horm. Behav. 27, 568-583.
Brandeis, R., Brandys, Y., Yehuda, S., 1989. The use of the Morris Water Maze in the study of memory and learning. Int. J. Neurosci. 48, 29-69.
Brummelte, S., Pawluski, J. L., Galea, L. A. M., 2006. High post-partum levels of corticosterone given to dams influence postnatal hippocampal cell proliferation and behavior of offspring: a model of post- partum stress and possible depression. Horm. Behav. 50, 370-382.
Boccia, M. L., Razzoli, M., Vadlamudi, S. P., Trumbull, W., Caleffie, C., Pedersen, C. A., 2007. Repeated long separations from pups produce depression-like behavior in rat mothers. Psychoneuroendocrinology 32, 65–71.
Bowlby, J., 1982. Attachment and loss: retrospect and prospect. Am. J. Orthopsychiatry 52, 664-678.
Bowman, R. E., 2005. Stress-induced changes in spatial memory are sexually differentiated and vary across the lifespan. J. Neuroendocrinol. 17, 526-35.
Cameron, H. A., Gould, E., 1994. Adult neurogenesis is regulated by adrenal steroid in the dentate gyrus. Neuroscience 61, 203-209.
Camerone, H. A., McKay, R. D., 1999. Restoring production of hippocampal neurons in old age. Nat. Neurosci. 2, 894-897.
Canetti, L., Bachar, E., Galili-Weisstub, E., DeNour, A. K., Shalev, A. Y., 1997. Parental bonding and mental health in adolescence. Adolescence 32, 381-394.
Cannizzaro, C., Plescia, F., Martire, M., Gagliano, M., Cannizzaro, G., Mantia, G., Cannizzaro, E., 2006. Single, intense prenatal stress decreases emotionality and enhances learning performance in the adolescent rat offspring: interaction with a brief, daily maternal separation. Behav. Brain. Res. 169, 128-36.
Dallman, M. F., Akana, S. F., Jacobson, L., Levin, N., Cascio, C. S., Shinsako, J., 1987. Characterization of corticosterone feedback regulation of ACTH secretion. Ann. N. Y. Acad. Sci. 512, 402-414.
De Kloet, E. R., Reul, J. M., 1987. Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology 12, 83-105.
De Kloet, E. R., Oitzl, M. S., Joels, M., 1999. Stress and cognition: are corticosteroids good or bad guys? Trends. Neurosci. 22, 422–426.
Desbonnet, L., Garrett, L., Daly, E., McDermott, K. W., Dinan, T. G., 2008. Sexually dimorphic effects of maternal separation stress on corticotrophin-releasing factor and vasopression systems in the adult rat brain. Int. J. Dev. Neurosci. 26, 259-268.
Dranovsky, A., Hen, R., 2006. Hippocampal neurogenesis: regulation by stress and antidepressants. Biol. Psychiatry. 59, 1136-1143.
Falconer, E. M., Galea, L. A., 2003. Sex differences in cell proliferation, cell death and defensive behavior following acute predator odor stress in adult rats. Brain Res. 975, 22-36.
Farabollini, F., File, S. E., Johnston, A. L., Wilson, C. A., 1987. An analysis of sex difference in the open field and tests of exploration and anxiety. Br. J. Pharmacol. 90, 263P
Francis, D. D., Meaney, M. J., 1999. Maternal care and the development of stress responses. Curr. Opin. Neurobiol. 9, 128-134.
Friedman, H. R., Goldman-Rakic, P. S., 1988. Activation of the hippocampus and dentate gyrus by working-memory: a 2-deoxyglucose study of behaving rhesus monkeys. J. Neurosci. 8, 4693-4706.
Kueng, W., Wirz-Justice, A., Menzi, R., Chappuis-Arndt, E., 1976. Regional brain variation of tryptophan monoamines, monoamine oxidase activity, plasma free tryptophan and total tryptophan during the estrous cycle of the rat. Neuroendocrinology 21, 289-296.
Gilbertson, M. W., Shenton, M. E., Ciszwski, A., Kasai, K., Lasko, N. B., 2002. Smaller hippocampus volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci. 5, 1242-1247.
Gould, E., Woolley, C. S., McEwen, B. S., 1991. Adrenal steroids regulate postnatal development of the rat dentate gyrus: I. Effects of glucocorticoids on cell death. J. Comp. Neurol. 313, 479-85.
Gould, E., Cameron, H. A., Daniels, D. C., Woolley, C. S., McEwen B. S., 1992. Adrenal hormones suppress cell division in the adult rat dentate gyrus. J. Neurosci. 12, 3642-3650.
Greisen, M. H., Altar, C. A., Bolwig, T. G., Whitehead, R., Wörtwein, G., 2005. Increase adult hippocampus brain-derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats. J. Neurosci. Res. 79, 772-778.
Grota, L. J., Ader, R., 1969. Continuous recording of maternal behavior in Rattus Norvegicus. Anim. Behav. 17, 722-729.
Handa, R. J., Burgess, L. H., Kerr, J. E., O'Keefe, J. A., 1994. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal Axis. Horm. Behav. 28, 464-76.
Hastings, N., Gould, E., 1999. Erratum: rapid extension of axon into CA3 region by adult-generated granule cells. J. Comp. Neurol. 415, 146-154.
Hiroi R., Neumaier F. J., 2009. Estrogen decreases 5-HT1B autoreceptor mRNA in selective subregion of rat dorsal raphe nucleus: Inverse association between gene expression and anxiety behavior in the open field. Neuroscience 158, 456-464.
Hofer, M. A., 1994. Early relationship as regulators of infant physiology and behavior. Acta. Paodiatt. Suppl. 397, 9-18.
Hogg S., 1996. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol. Biochem. Behav. 54, 21–30.
Huot, R. L., Plotsky, P. M., Lenox, R. H., McNamara, R. K., 2002. Neonatal maternal separation reduces hippocampal mossy fiber density in adult Long Evans rats. Brain Res. 950, 52-53.
Jacobson, L., Sapolsky, R., 1991. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr. Rev. 12, 118-134.
Johnston, A. L., File, S. E., 1991. Sex differences in animals tests of anxiety. Physiol. Behav. 49, 245-249.
Kalinichev, M., Easterling, K. W., Plotsky, P. M., Holtzman, S. G., 2002. Long-lasting changes in stress-induced corticosterone response and anxiety-like behaviors as a consequence of neonatal maternal separation in Long-Evans rats. Pharmacol. Biochem. Behav. 73, 131-140.
Kempermann, G., Kuhn, H. G., Gage, F. H., 1997. More hippocampus neurons in adult mice living in an enriched environment. Nature 386, 493-495.
Kempermann, G., Kuhn, H. G., Gage, F. H., 1998. Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 18, 3206-3212.
Kempermann, G., Gage, F. H., 2002. Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur. J. Neurosci. 16, 129-36.
Kessler, R. C., McGonagle, K. A., Zhao, S., Nelson, C. B., Hughes, M., Eshleman, S., Wittchen, H. U., Kendler, K. S., 1994. Lifetime and 12-month prevalence of DSMIII-R psychiatric disorders in the United States. Results from the NationalComorbidity Survey. Arch. Gen. Psychiatry. 51, 8–19.
Kikusui, T., Mori, Y., 2009. Behavioral and neurochemical consequence of early weaning in rodents. J. Neuroendocrinol. 21, 427-431.
Kitraki, E., Kremmyda, O., Youlatos, D., Alexis, M. N., Kittas, C., 2004. Gender-dependent alterations in corticosteroid receptor status and spatial performance following 21 days of restraint stress. Neuroscience 125, 47-55.
Knuth, E. D., Etgen, A. M., 2007. Long-term behavioral consequence of brief, repeated neonatal isolation. Brain Res. 1128, 139-147.
Kumaran, D., Maguire, E. A., 2005. The human hippocampus: cognitive maps or relational memory? J. Neurosci. 25, 7254-7259.
Langeland, W., Van Den Brink, W., 2004. Child sexual abuse and substance use disorders: role of psychiatric comorbidity. Br. J. Psychiatry. 185, 352-355.
Lee, J. H., Kim, H. J., Kim, J. G., Ryu, V., Kim, B. T., Kang, D. W., Jahng, J. W., 2007. Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci. Res. 58, 32-39.
Lehmann, J., Pryce, C. R., Bettschen, D., Feldon, J., 1999. The maternal separation paradigm and adult emotionality and cognition in male and female Wistar rats. Pharmacol. Biochem. Behav. 64, 705-715.
Leon, M., Croskerry P. G., Smith, G. K.,1978. Thermal control of mother-younger contact in rats. Physiol. Behav. 21, 790-811.
Levine, S., 1994. The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factors. Ann. N. Y. Acad .Sci. 746, 275-288.
Lippmann, M., Bress, A., Nemeroff, C. B., Plotsky, P. M., Monteggia, L. M., 2007. Long-term behavioral and molecular alterations associated with maternal separation in rats. Eur. J. Neurosci. 25, 3091-3098.
Lipska, B. K., Aultman, J. M., Verma, A., Weinberger, D. R., Moghaddam, B., 2002. Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 27, 47-54.
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P. M., Meaney, M. J., 1997. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to Stress. Science 277, 1659-1662.
Liu, D., Caldji, C., Sharma, S., Plotsky, P. M., Meaney, M. J., 2000. Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinepherine release in the hypothalamic paraventricular Nucleus. J. Neuroendocrinol. 12, 5-12.
Luine, V. N., Martinez, C., Villegas, M., McEwen, B. S., 1994. Repeat stress cause reversible impairment of spatial memory performance. Brain Res. 639, 167-170.
Luine, V. N., Martinez, C., Villegas, M., McEwen, B. S., 1996. Restraint stress reversibly enhances spatial memory performance. Physiol. Behav. 59, 27-32.
Magariños A. M., Somoza G., De Nicola A. F. 1987. Glucocorticoid negative feedback and glucocorticoid receptors after hippocampectomy in rats. Horm. Metab. Res. 19, 105-109.
Maguire E. A., Burke T., Phillips J., Staunton H. 1996. Topographical disorientation following unilateral temporal lobe lesions in humans. Neuropsychologia 34, 993-1001.
Marcondes, F. K., Miguel, K. J., Melo, L. L., Spadari-Bratfisch, R. C., 2001. Estrous cycle influence the response of female rats in the elevated plus-maze test. Physiol. Behav. 74, 435-440.
Markakis, E. A., Gage, F. H., 1999. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J. Comp. Neurol. 406, 449-460.
Masur, J., Schutz, M. T., Boerngen, R., 1980. Gender differences in open-field behavior as a function of age. Dev. Psychobiol. 13, 107-110.
Martin, C. E., Cake, M. H., Hartmann, P. E., Cook, I. F., 1977. Relationship between foetal corticosteroids, maternal progesterone and parturition in the rat. Acta. Endocrinol. 84, 167-176.
Meaney, M. J., Aitken, D. H., Bodnoff, S. R., Iny, L. J., Tatarewicz, J. E., Sapolsky, R. M., 1985. Early postnatal handling alters glucocorticoid receptor concentrations in selected brain regions. Behav. Neurosci. 99, 765-770.
McCormick, C. M., Kehoe, P., Mallinson, K., Cecchi, L., Frye, C. A., 2002. Neonatal isolation alters stress hormone and mesolimbic dopamine release in juvenile rats. Pharmacol. Biochem. Behav. 73, 77-85.
McDonald, H. Y., Wojtowicz, J. M., 2005. Dynamics of neurogenesis in the dentate gyrus of adult rats. Neurosci. Lett. 385, 70-75.
McIntosh, J., Anisman, H., Merali, Z., 1999. Short- and long-periods of neonatal maternal separation differentially affect anxiety and feeding in adult rats: gender-dependent effects. Dev. Brain Res. 113, 97-106.
Mirescu, C., Peters, J. D., Gould, E., 2004. Early life experience alters response of adult neurogenesis to stress. Nat. Neurosci. 7, 841-845.
Mirescu, C., Gould, E., 2006. Stress and adult neurogenesis. Hippocampus 16, 233-238.
Moore, C. L., 1984. Maternal contributions to the development of masculine sexual behavior in laboratory rat. Dev. Psychobiol. 17, 347-356.
O'Donnell, D., Larocque, S., Seckl, J. R., Meaney, M. J., 1994. Postnatal handling alters glucocorticoid, but not mineralocorticoid messenger RNA expression in the hippocampus of adult rats. Brain Res. Mol. Brain Res. 26, 242-248.
Oomen, C. A., Girardi, C. E., Cahyadi, R., Verbeek, E. C., Krugers, H., Joëls, M., Lucassen, P. J., 2009. Opposite effects of early maternal deprivation on neurogenesis in male versus female rats. Plos one 4, e3675.
Orengo, C. A., Fullerton, G., Tan, R., 2004. Male depression: A review of gender concerns and testosterone therapy. Geriatrics 59, 24–30.
Paxinos, G., Waston, C., 1986. The rat brain in stereotaxic coordinates. Academic Press, San Diego.
Plotsky, P. M., Cunningham, E. T., Widmaier, E. P., 1989. Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr. Rev. 10, 437-58.
Plotsky P. M., Meaney M. J. 1993. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res. Mol. Brain Res. 18, 195-200.
Rizzi, S., Bianchi, P., Guidi, S., Ciani, E., Bartesaghi, R., 2007. Neonatal isolation impairs neurogenesis in the dentate gyrus of the guinea pig. Hippocampus 17, 78-91.
Roman, E., 2004. Maternal separation in rats: an experimental model for long-term effects of early life experiences on neurochemistry, voluntary ethanol intake and exploration and risk Assessment Behavior. Uppsala University, Interfaculty Units, Acta Universitatis Upsaliensis
Roman, E., Gustafsson, L., Berg, M., Nylander, I. 2006. Behavioral profiles and stress-induced corticosteroid secretion in male Wistar rats subjected to short and prolonged periods of maternal separation. Horm. Behav. 50, 736-747.
Rosenfeld, P., Suchecki, D., Levine, S., 1992. Multifactorial regulation of the hypothalamic-pituitary-adrenal axis during development. Neurosci. Biobehav. Rev. 16, 553-568.
Salomé, N., Viltart, O., Lesage, J., Landgraf, R., Vieau, D., Laborie, C., 2006. Altered hypothalamo-pituitary-adrenal and sympatho-adrenomedullary activities in rats bred for high anxiety: central and peripheral correlates. Psychoneuroendocrinology 31, 724-735.
Sapolsky, R. M., 2000. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry 57, 925–935.
Seidman, S. N., 2003.Testosterone deficiency and mood in aging men: pathogenic and therapeutic interactions. World J. Biol. Psychiatry 4, 14–20.
Selye, H., 1976. Forty years of stress research: principal remaining problems and misconceptions. Can. Med. Assoc. J. 115, 53-56.
Shors, T. J., Mathew, J., Sisti, H. M., Edgecomb, C., Beckoff, S., Dalla, C., 2007. Neurogenesis and helplessness are mediated by controllability in males but not in females. Biol. Psychiatry 62, 487-495.
Slotten, H. A., Kalinichev, M., Hagan, J. J., Marsden, C. A., Fone, K. C., 2006. Long-lasting changes in behavioral and neuroendocrine indices in the rat following neonatal maternal separation: Gender-dependent effects. Brain Res. 1097, 123-132.
Stanton, M. E., Gutierrez, Y. R., Levine, S., 1988. Maternal deprivation potentiates pituitary-adrenal stress responses in infant rats. Behav. Neurosci. 102, 692-700.
Tanapat, P., Hastings, N. B., Reeves, A. J., Gould, E., 1999. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. Behav. Brain Res. 117, 117-125.
Uriarte, N., Breigeiron, M. K., Benetti, F., Rosa, X. F., Lucion, A. B., 2007. Effects of maternal care on the development, emotionality, and reproductive functions in male and female rats. Dev. Psychobiol. 49, 451-62.
Veenema, A. H., Neumann, I. D., 2009. Maternal separation enhances offensive play-fighting basal corticosterone and hypothalamus vasopression mRNA expression in juvenile male rats. Psychoneuroendorinology 34, 463-467.
Viau V., Sharma S., Meaney M. J. Changes in plasma adrenocorticotropin, corticosterone, corticosteroid-binding globulin, and hippocampal glucocorticoid receptor occupancy/translocation in rat pups in response to stress. J. Neuroendocrinol. 8, 1-8.
Walker, C. D., Perrin, M., Vale, W., Rivier, C., 1986. Ontogeny of the stress response in the rat: role of the pituitary and the hypothalamus. Endocrinology 118, 1445-1451.
Wigger, A., Neumann, I. D., 1999. Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol. Behav. 66, 293-302.
Wihelm K., Parker G., Asghari A.1998. Sex difference in the experience of depressed mood state over fifteen years. Soc. Psychiatry Psychiatr. Epidemiol. 35, 16-20.
Williams, C. L., Meck, W. H., 1991. The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology 16, 155-176.
Workel J. O., Oitzl M. S., Fluttert M., Lesscher H., Karssen A., de Kloet E. R., 2001. Differential and age-dependent effects of maternal deprivation on the hypothalamic-pituitary-adrenal axis of brown Norway rats from youth to senescence. J. Neuroendocrinol. 13, 569-580.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45196-
dc.description.abstract早年生活經驗對個體在生理與行為的表現上具有長遠的影響,將初生幼鼠進行母子分離(maternal separation)的處理常作承受為個體早年生活壓力的動物模式。在過去的研究中發現,初生幼鼠進行母子分離會影響個體於成年時對壓力的行為與生理反應以及對空間記憶學習的能力,而分離時間的長短對個體所造成的影響也不盡相同。迄今大多數的研究係以雄鼠作為實驗對象,對於母子分離在雌、雄大鼠之間影響的差異,並未深入探討。此外,初生之幼鼠進行母子分離雖已發現影響其成年期的生理、行為表現,但並不清楚此現象是否在離乳期(post-weaning period)幼鼠即可顯現。故本研究以鼠齡22-24天之Long-Evans雌、雄大鼠為實驗對象,探討在出生後進行不同時距之母子分離,對此兩種性別在離乳期之焦慮行為與生理反應,空間記憶學習行為以及海馬神經新生的影響。
本研究將出生後幼鼠分為母子分離15分鐘組、母子分離180分鐘組以及母子未分離之對照組,在出生後第4天至第21天進行母子分離。子代大鼠於出生後第22天以升高十字迷宮觀察各組的焦慮行為,結果顯示母子分離15分鐘有助減輕雌鼠於升高十字迷宮中的焦慮行為。於次日將各組動物斷頭取血,以放射性免疫檢定法分析各組大鼠血清中皮質酮(corticosterone)的濃度,並取其腎上腺稱重,計算其腎上腺重/體重的百分比,母子分離15分鐘以及180分鐘之處理可使雌鼠的腎上腺重/體重百分比與血清中皮質酮濃度較未分離之對照組為低;雄鼠而言,母子分離15分鐘處理者之其腎上腺重/體重百分比較180分鐘處理者為低,而分離15分鐘以及180分鐘處理皆可使血清中皮質酮濃度較未分離之對照組為低。在空間記憶學習方面,則以Morris水迷宮的探索測試(probe test)作為各組大鼠空間記憶學習能力的測量方式。在三組雄鼠中,以母子分離15分鐘組在標的象限(target quadrant)的停留時間最久;而三組雌鼠中則以母子分離180分鐘組於標的象限的停留時間最長,即母子分離15分鐘有助雄鼠增進空間記憶學習,但對雌鼠而言,則為母子分離180分鐘之處理才能達到此效果。在子代大鼠出生後22天給予劑量為100 mg/kg的5-bromo-2'-deoxyuridine (BrdU)之腹腔注射處理,於2小時後犧牲灌流並以免疫組織化學染色觀察其海馬齒狀回細胞增生的情形,結果發現各組大鼠的細胞增生數量並沒有統計上的差異。
綜合上述結果,顯示母子分離15分鐘與180分鐘皆可使雌、雄大鼠於離乳期的腎上腺重/體重百分比以及血清中皮質酮濃度下降。此外,母子分離15分鐘可減輕雌鼠的焦慮行為表現,並增進雄鼠的空間記憶學習能力。而母子分離180分鐘則可改善雌鼠的空間記憶學習能力。由此顯示長短不同時距之母子分離因性別的差異對個體的影響有所不同。
zh_TW
dc.description.abstractEarly life experience appears to have long-lasting influences on an organism’s physiological functions and behavior. Neonatal maternal separation (MS) has been used to model long-term changes in neurochemical responses and behavior associated with exposure to early-life stress. Many studies have shown that neonatal MS changes the behavior and physiological responses to stress, and the spatial memory and learning ability in adulthood. The duration of MS is a critical factor of these effects. Although stress induces different physiological and behavioral responses between males and females, male rats were used as subjects in most of these studies. In addition, whether neonatal MS leads to sex differences in abovementioned behaviors remains unclear in post-weaning rats. In the present study, we used both male and female Long-Evans rats on postnatal 22-24 days which have been through different duration of MS to reveal the effects of MS on anxiety responses, spatial memory and learning and cell proliferation.
Neonatal pups were divided into three groups: control, MS 15 minutes (MS-15) and MS 180 minutes (MS-180). Infant rats were deprived of maternal contact between the 4th and the 21st postnatal days. Elevated plus maze was used to investigate the anxiety-like behavior on 22nd postnatal day. MS-15 female rats showed significantly lower anxiety-like behavior. We also collected the blood to measure the basal levels of coritocosterone and weighed the adrenal glands. Our results showed that MS-15 and MS-180 female rats reduced the basal levels of corticosterone and the percentage of adrenal gland/body weight. MS-15 male rats reduced the percentage of adrenal gland/body weight and both MS-15 and MS-180 male rats had lower basal level of corticosterone than control male rats. The duration on target quadrant of Morris water maze was used to investigate the spatial memory and learning ability. MS-180 female rats stay longer on the target quadrant than control and MS-15 female rats, while MS-15 male spend more time on the target quadrant than control and MS-180 male rats. To investigate the cell proliferation in granule cell layer (GCL), 5-bromo-2'-deoxyuridine (BrdU) was given at a dose of 100 mg/kg to rats by intraperitoneal injection and the animals were perfused two hours later. The immunohistochemistry of BrdU was conducted to examine cell proliferation in the hippocampus dentate gyrus. Our results showed that there is no significant difference in cell proliferation in GCL between all groups.
In summary, both MS-15 and MS-180 groups reduced the basal levels of corticosterone. In female rats, MS 15 minutes and MS 180 minutes reduced the percentage of adrenal weight/body weight. In male rats, only MS 15 minutes had the same effect. Moreover, MS 15 minutes reduced the anxiety-like behavior in female rats, and improved the spatial memory and learning ability in male rats. On the other hand, MS 180 minutes improved the spatial memory and learning ability in female rats. These results indicated that neonatal short-term and long-term MS induced different effects on post-weaning rats, and gender-difference may involve in the effects.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:08:25Z (GMT). No. of bitstreams: 1
ntu-99-R96441001-1.pdf: 3598834 bytes, checksum: 30ecc1c3a4c67ddaff599cdafe69b16e (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目 錄..................................................I
圖 次.................................................II
中文摘要................................................1
Abstract................................................3
第一章 緒論
1.1早年生活經驗對個體壓力與焦慮反應的影響...........5
1.2壓力與母子分離...................................5
1.3母子分離對成熟個體焦慮反應的影響.................7
1.4壓力與母子分離對海馬的影響.......................8
1.5母子分離對空間記憶學習的影響....................11
1.6性別差異在空間學習、壓力反應以及母子分離的影響..12
1.7研究目的與實驗設計..............................14
第二章 材料與方法
2.1 實驗動物與飼養方式.............................16
2.2母子分離流程....................................16
2.3行為實驗........................................16
2.4放射免疫檢測法分析皮質酮含量....................17
2.5腎上腺重/體重百分比之分析.......................18
2.6 BrdU 免疫組織化學染色法........................18
2.7統計方法........................................21
第三章 結果
3.1雌、雄幼鼠的體重變化............................22
3.2雌、雄幼鼠於升高十字迷宮的焦慮行為表現..........22
3.3雌、雄幼鼠腎上腺重/體重百分比...................23
3.4雌、雄幼鼠血清之皮質酮濃度......................23
3.5升高十字迷宮、腎上腺重/體重百分比以及血清皮質酮濃度
之相關性......24
3.5雌、雄幼鼠於Morris水迷宮探索測試的表現..........24
3.6雌、雄幼鼠齒狀回內顆粒細胞層(GCL)之神經前趨細胞增生
數量............................................24
第四章 討論
4.1母子分離對幼鼠體重變化的影響....................26
4.2母子分離對幼鼠焦慮反應的影響....................27
4.3母子分離對幼鼠腎上腺重/體重百分比的影響響.......30
4.4母子分離對幼鼠血清中基礎皮質酮濃度的影響........31
4.5母子分離對幼鼠齒狀回細胞增生的影響..............33
4.6母子分離對幼鼠空間學習能力的影響................34
參考文獻...............................................53
圖 次
圖1. 雌、雄幼鼠於出生後第4天、第7天、第11天、第14天與第18
天之體重記錄......................................38
圖2. 雌、雄幼鼠在出生後第22天於升高十字迷宮中進入開放臂與
封閉臂之次數總和..................................39
圖3. 雌、雄幼鼠在出生後第22天於升高十字迷宮中進入開放臂之
次數百分比........................................40
圖4. 雌、雄幼鼠在出生後第22天於升高十字迷宮中停留於開放臂
的時間比..........................................41
圖5. 雌、雄幼鼠在出生後第22天於升高十字迷宮中停留於封閉臂
的時間比..........................................42
圖6. 雌、雄幼鼠於出生後第23天腎上腺重/體重百分比.......43
圖7. 雌、雄幼鼠在出生後第23天於血清中皮質酮於血清中的濃
度................................................44
圖 8. 母子分離15分鐘雌鼠停留於開放臂之時間百分比與腎上腺重/
體重百分比的關係..................................45
圖 9. 母子分離15分鐘雌鼠停留於開放臂之時間百分比與血清皮質
酮濃度的關係......................................46
圖10. 母子分離15分鐘雌鼠腎上腺重/體重百分比與血清皮質酮濃度
的關係............................................47
圖 11. 雌、雄幼鼠在出生後第23天進行探索測試..............48
圖 12. 雌、雄幼鼠在出生後第22天海馬內齒狀回顆粒細胞層中神經
前趨細胞的增生....................................49
圖13a. 未分離組齒狀回顆粒細胞層之BrdU陽性反應細
胞................................................50
圖13b. 母子分離15分鐘組齒狀回顆粒細胞層之BrdU陽性反應細
胞................................................51
圖13c. 母子分離180分鐘組齒狀回顆粒細胞層之BrdU陽性反應細
胞..........52
dc.language.isozh-TW
dc.subject母子分離zh_TW
dc.subject神經新生zh_TW
dc.subject空間學習zh_TW
dc.subject焦慮反應zh_TW
dc.subjectneurogenesisen
dc.subjectmaternal separationen
dc.subjectspatial learningen
dc.subjectanxiety responsesen
dc.title不同時距之母子分離對離乳期大鼠在焦慮反應、空間記憶學習以及海馬細胞增生的影響具有兩性差異zh_TW
dc.titleMaternal separation of different intervals induces sex differences in anxiety responses, spatial memory and learning and hippocampal cell proliferation in post-weaning ratsen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭水銀,盧國賢,蘇慧敏
dc.subject.keyword母子分離,焦慮反應,空間學習,神經新生,zh_TW
dc.subject.keywordmaternal separation,anxiety responses,spatial learning,neurogenesis,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2010-02-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
3.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved