Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45190
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林和(LinHo)
dc.contributor.authorPei-Yun Hsiehen
dc.contributor.author謝佩芸zh_TW
dc.date.accessioned2021-06-15T04:08:09Z-
dc.date.available2010-02-11
dc.date.copyright2010-02-11
dc.date.issued2010
dc.date.submitted2010-02-04
dc.identifier.citation參考文獻:
Chou, C., 2004: Establishment of the low-level wind anomalies over the western North Pacific during ENSO development. J. Climate, 17, 2195–2212.
Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 2324–2340.
Gill, A. E., 1980: Some simple solutions for heat-induced tropicalcirculation. Quart. J. Roy. Meteor. Soc., 106, 447–462.
Hsu, H.-H., Y.-L. Chen, and W. S. Kau, 2001: Effects of ocean-atmosphere interaction on the winter temperature in Taiwan and East Asia. Climate Dynamics, 17, 305-316.
Kug J.-S., and I.-S. Kang, 2006: Interactive feedback between the Indian Ocean and ENSO. J. Climate, 19, 1784–1801.
Lau, N.-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 4287–4309.
——, and ——, 2003: Atmosphere–ocean variations in the Indo- Pacific sector during ENSO episodes. J. Climate, 16, 3–20.
——, and ——, 2006: ENSO modulation of the interannual and intraseasonal variability of the East Asian monsoon— A model study. J. Climate, 19, 4508–4530.
Li T, Tung YC, Hwu JW, 2005 Remote and local SST forcing in shaping. Asian-Australian monsoon anomalies. J. Meteorol Soc Japan 83: 153-167
Lindzen R.S. and S. Nigam, 1987. On the role of sea surface temperature gradients in forcing low level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418-2436.
Neelin, J. D., I. M. Held, and K. H. Cook, 1987:
Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341–2348.
Nigam, S., and H. -S. Shen, 1993: Structure of oceanic and atmospheric low- frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J. Climate, 6, 657-676.
Rodwell, M. J. and B. J. Hoskins: 2001, Subtropical anticyclones and summer monsoons. J. Climate, 14, 3192–3211.
Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T.
Yamagata:,1999: A dipole mode in the tropical Indian Ocean, Nature, 401, 360-363.
Seager R., N. Harnik, Y. Kushnir, W. Robinson, and J. A. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 2960–2978.
——, ——, W. A. Robinson, Y. Kushnir, M. Ting, H.-P. Huang, and J. Velez, 2005: Mechanisms of ENSO forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131, 1501–1527.
Wallace, J.M., and D.S. Gutzler 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784-812.
Wang B., and Q. Zhang, 2002: Pacific–east Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 3252–3265.
——, R. Wu, and X. Fu, 2000: Pacific–east Asian teleconnection: How does ENSO affect east Asian climate? J. Climate, 13, 1517–1536.
Watanabe M., and F.-F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29, 1478, doi: 10.1029/2001GL014318.
——, and ——, 2003: A moist linear baroclinic model: Coupled dynamical– convective response to El Niño. J. Climate, 16, 1121–1139.
Wu, B., T. Zhou, T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian Climate. J. Climate, doi: 10.1175/2008JCLI2710.1
Yang, J., Q. Liu, S. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.
Yulaeva E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7, 1719–1736.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45190-
dc.description.abstract聖嬰發展年北半球冬季,菲律賓外海會出現一低層反氣旋變異:這個反氣旋變異於十月生成後,迅速地在十二月發展到巔峰,並持續存在至隔年春夏,盤踞菲律賓海長達半年之久。菲律賓海反氣旋不僅對東亞季風區年際變化有顯著影響,亦被視為全球大氣對聖嬰反應之主要現象之一。
本文研究維持菲律賓海反氣旋之機制,結果顯示以下兩種影響途徑:
(一) 遠端強迫過程
聖嬰發展時,全球熱帶對流層大氣會因赤道東太平洋變異而增暖,形成圍繞熱帶的環狀結構,同時在副熱帶呈現冷卻狀態。因之在聖嬰發展年秋末,南亞上空形成強烈經向溫度梯度,引發北緯10~20度附近高空副熱帶噴流。此噴流條出區位於華南外海,透過次環流之地轉調整,橫跨出區的非地轉風於其右側高空造成輻合區,提供菲律賓外海沉降的動力強迫作用,並經由Sverdrup平衡產生低層高壓環流。
(二) 局地風-蒸發-暖海回饋過程
當反氣旋存在於冬季西北太平洋地區的東北季風背景場時,風-蒸發效應將顯現:反氣旋東南側總風場的風速增強,加強海表蒸發,導致海面溫度冷卻;而西北側則反之。然而只有在海溫冷卻區域重合氣候場暖海深對流條件時,風-蒸發造成的些微海溫降低才能有效地引起其上空對流劇烈減弱,引發非絕熱冷卻改變環流場。伴有暖海條件的海溫冷區位於菲律賓海反氣旋的東南角,提供理想的強迫位置令羅士培反應正確地落在菲律賓海,使之回饋到原反氣旋,此過程並透過模式模擬充分驗証。這個局地海氣交互作用形成菲律賓海反氣旋自我維持之正回饋系統。
這兩種機制過程同時維持聖嬰發展年十月起至隔年四月間的菲律賓海反氣旋的存在,並且皆支持反氣旋在十月生成後急遽成長及隨後鞏固的現象。
zh_TW
dc.description.abstractDuring Nino development a low-level anticyclone often appears over the Philippine Sea in boreal winter, which, after its formation in October, grows rapidly and reaches peak around December. It will last until the next spring/summer for a sustained period more than half year. This Philippine Sea anticyclone (PSA) exerts major impacts on interannual variability of the East Asian’s climate, is also regarded one of the most dominant responses of global circulation from ENSO.
This study is focused on the mechanism to maintain the PSA, our results show two vital paths :
(1) Remote forcing:
During the developing stage of Nino, the whole tropical belt will be warmed up to form an annular structure. In subtropical area it exhibits compensating cooling. The local manifestation in the South Asia shows a sharp upper temperature gradient in winter, that leads to the intensification of subtropical jet around 10~20N. This jet streak has its exit near the South China shore which induces sub-circulation via geostrophic adjustment. The result is a convergent zone associated with the cross-exit ageostrophic winds on the left side of exit, an area coincident with the upper troposphere over the PSA. Hence the strong subsidence, a result of dynamical forcing, produces this low-level anomalous high according to the Sverdrup balance.
(2) Local wind-evaporation-warm ocean feedback:
Once the PSA is formed it is located within the background of northeastern winds during the northern winter, the effect of wind-evaporation takes over: that is, on the southeastern half of the PSA the stronger total wind speed increases evaporation rate that cools the sea surface temperature and an opposite effect happens on the northwestern half of the PSA. Nevertheless, in terms of feedback of SST to atmosphere, this wind-evaporation effect must be added an extra condition: only over warm ocean when deep convection presents the anomaly of surface can be carried to free atmosphere that effectively modifies the atmospheric circulation. The coincidence between the wind-evaporation area and climatological warm ocean locates on the southeastern corner of the PSA, the ideal spot to put forth the Rossby response that has the correct positive feedback as the wind-evaporation cooling to circulation. This self-maintained in situ air-sea interaction can be fully verified by model simulation.
Based on above two processes the PSA is expected to stay from October of Nino development year to the next April. It also gives clues to how the PSA rapid grows after October and establishes for later months.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:08:09Z (GMT). No. of bitstreams: 1
ntu-99-R96229024-1.pdf: 20173236 bytes, checksum: b924aeb46052c7ace861a45158f8777a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
英文摘要 v
目錄 vii
圖表目錄 viii
第一章 前言 1
第二章 資料與數值模式 4
2.1 資料來源與處理方式 4
2.2 數值模式—Princeton Anomaly AGCM 6
第三章 菲律賓海反氣旋之時空結構 7
第四章 副熱帶噴流條強迫機制 8
4.1 熱帶環狀模(Tropical Annular Mode) 8
4.2 副熱帶噴流條強迫(Subtropical Jet Streak Forcing) 9
4.3 Sverdrup平衡 10
第五章 風-蒸發-暖海回饋效應 11
5.1 從大氣到海洋 11
5.2 從海洋到大氣 --數值實驗 11
5.3 正回饋效應 13
第六章 總結 14
6.1 總結 14
6.2 討論 15
參考文獻 17
圖表 20
dc.language.isozh-TW
dc.subject菲律賓海反氣旋zh_TW
dc.subject熱帶環狀模zh_TW
dc.subject聖嬰現象zh_TW
dc.subject西北太平洋zh_TW
dc.subject地轉調整zh_TW
dc.subject海氣交互作用zh_TW
dc.subjecttropical annular modeen
dc.subjectENSOen
dc.subjectWestern North Pacificen
dc.subjectPhilippine Sea anticycloneen
dc.subjectair-sea interactionen
dc.subjectgeostrophic adjustmenten
dc.title菲律賓海反氣旋之維持機制zh_TW
dc.titleMaintenance of the Philippine Sea Anticycloneen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee周佳,許晃雄,陳正達,盧孟明
dc.subject.keyword菲律賓海反氣旋,西北太平洋,聖嬰現象,熱帶環狀模,地轉調整,海氣交互作用,zh_TW
dc.subject.keywordPhilippine Sea anticyclone,Western North Pacific,ENSO,tropical annular mode,geostrophic adjustment,air-sea interaction,en
dc.relation.page38
dc.rights.note有償授權
dc.date.accepted2010-02-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
19.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved