Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45178
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊照彥(Jaw-Yen Uang)
dc.contributor.authorYen-Hsiang Huangen
dc.contributor.author黃彥翔zh_TW
dc.date.accessioned2021-06-15T04:07:39Z-
dc.date.available2012-02-11
dc.date.copyright2010-02-11
dc.date.issued2010
dc.date.submitted2010-02-05
dc.identifier.citation[1] Duncan, A. B. & Peterson, G. P., (1994) “Review of Microscale Heat Transfer,” Applied Mechanics Reviews, 47, pp. 397-428.
[2] Chen, G., (1997) “Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures,” ASME Journal of Heat Transfer, 119, pp. 220-229.
[3] Chen, G., (1998) “Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices,” Physical Review B, 57, pp. 14958-14973.
[4] Chen, G., (2000) “Phonon Heat Conduction in Nanostructure,” International Journal of Thermal Sciences, 39, pp. 471-480.
[5] Chen, G., (2001) “Ballistic-Diffusive Heat-Conduction Equation,” Physical Review Letters, 86, pp. 2297-2300.
[6] Chen, G., (2005) Nanoscale Energy Transport and Conversion, Oxford University Press.
[7] Chen, G., Tien, C. L., Wu, X. & Smith, J. S., (1994) “Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures,” ASME Journal of Heat Transfer, 116, pp. 325-331.
[8] Chen, G. & Neagu, M., (2001) “Thermal Conductivity and Heat Transfer in Superlattices,” Applied Physics Letters, 71, pp. 2761-2763.
[9] Dames, C. & Chen, G., (2004) “Theoretical Phonon Thermal Conductivity of Si/Ge Superlattice Nanowire,” Journal of Applied Physics, 95, pp. 682-692.
[10] Flik, M. I., (1990) “Size Effect on Thermal Conductivity of High-Tc Thin-Film Superconductors,” ASME Journal of Heat Transfer, 112, pp. 872-880.
[11] Kumar, S. & Vradis, G. C., (1994) “Thermal Conductivity of Thin Metallic Films,” ASME Journal of Heat Transfer, 116, pp. 28-34.
[12] Jeng, Ming-Shan, Yang, R., Song, D. & Chen,G., (2008)“Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation1,” Journal of Heat Transfer, 130 , pp. 042410-1
[13] Joshi, A. A. & Majumdar, A., (1993) “Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films,” Journal of Applied Physics, 74, pp. 31-38.
[14] Kittel, C., (1986) Introduction to Solid State Physics, Wiley, New York.
[15] Little, W. A., (1959) “The Transport of Heat Between Dissimilar Solids at Low Temperature,” Canadian Journal of Physics, 37, pp. 334-349.
[16] Majumdar, A., (1993) “Microscale Heat Conduction in Dielectric Thin Film,” ASME Journal of Heat Transfer, 115, pp. 7-16.
[17] Modest, M. F., (1993) Radiative Heat Transfer, McGraw-Hill, Inc.
[18] Vedavarz, A., Kumar, S., & Moallemi, M. K., (1991) 'Significance of Non-
Fourier Heat Waves in Microscale Conduction,' Micromechanical Sensors,
Actuators, and Systems, 32, pp. 109-122.
[19] Phelan, P. E., (1998) “Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors,” ASME Journal of Heat Transfer, 120, pp. 37-43.
[20] Prasher, R. S. & Phelan, P. E., (2001) “A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance,” ASME Journal of Heat Transfer, 123, pp. 105-112.
[21] Siegel, R. & Howell, J. R., (1982) Thermal Radiation Heat Transfer, 2nd edition, Hemisphere, New York.
[22] Flik, M., Choi, B. I. & Goodson, K. E., (1992) “Heat Transfer Regimes in Microstructures,” ASME Journal of Heat Transfer, 114, pp. 666-674.
[23] Swartz, E. T., (1987) “Solid-Solid Thermal Boundary Resistance,” Ph.D. thesis, Coronell University.
[24] Swartz, E. T. & Pohl, R. O., (1989) “Thermal Boundary Resistance,” Reviews of Modern Physics, 61, pp. 605-668.
[25] Tian, W. & Yang, R., (2007) “Thermal Conductivity Modeling of Compacted Nanowire Composites,” Journal of Applied Physics, 101, pp. 054320.
[26] Tian, W. & Yang, R., (2007)“Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites,” Applied Physics Letters, 90, pp.263105.
[27] Yang, R. & Chen, G., (2004) “Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites,” Physical Review B, 69, pp. 195316.
[28] Yang, R., Chen, G. & Dresselhaus, M. S., (2004) “Thermal Conductivity of Simple and Tubular Nanowire Composites in the longitudinal Direction,” Physical Review B, 72, pp.125418.
[29] Yang, R., Chen, G., Laroche, M. & Taur, Y., (2005) “Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation,” ASME Journal of Heat Transfer,127, pp. 298-306.
[30] Zeng, T. & Chen, G., (2001) “Phonon Heat Conduction in thin Film:Impacts of Thermal Boundary Resistance and Internal Heat Generation,” ASME Journal of Heat Transfer ,123, pp. 340-347.
[31] Zeng, T. & Liu, W., (2003) “Phonon Heat Conduction in Micro- and Nano-core-shell Structures with Cylindrical and Spherical Geometries,” Journal of Applied Physics ,93, pp. 4163-4165.
[32] Prasher, R., (2006) “Transverse Thermal Conductivity of Porous Materials Made from Aligned Nano- and Microcylindrical Pores,” Journal of Applied Physics ,100, pp. 064302.
[33] Prasher, R., (2006) “Thermal Conductivity of Composites of Aligned Nanoscale and Microscale Wires and Pores,” Journal of Applied Physics ,100, pp. 034307.
[34] Li, D., Wu, Y., Kim, P., Shi, Li., Yang, P., & Majumdar, A., (2003) “Thermal Conductivity of Individual Silicon Nanowires,” Applied Physics Letters, 83, pp.2934-2936.
[35] Yang, R., Chen, G., & Dresselhaus, M. S., (2005) “Thermal Conductivity Modeling of Core-Shell and Tubular Nanowires,” Nano Letters,5, pp. 1111-1115.
[36] Hsieh, T. Y., Yang, J. Y., & Hong, Z. C., (2009) “Thermal Conductivity Modeling of Compacted Type Nanocomposites,” Journal of Applied Physics ,106, pp. 023528.
[37] Greenspan, H., Kelber, C. N., & Okrent, D., (1968) Computing Methods in Reactor Physics, Gordon and Breach, Science Publishers, Inc., New York.
[38] Lewis, E. E., & Miller, W. F., Jr., (1984) Computational Methods of Neutron Transport, John Wiley & Sons, New York.
[39] 劉靜,微米 / 奈米尺度熱傳學,北京,科學出版社,2001
[40] 胡東洲,尺寸效應與界面熱阻對超晶格奈米線熱傳導之影響,國立交通大學機械工程學系碩士論文,新竹,2005
[41] 謝澤揚,聲子熱傳輸與理想量子氣體動力學之高解析算則,國立臺灣大學工學院應用力學所博士論文,台北,2007
[42] 林義傑,應用高解析算則及修正分離座標法之微觀薄膜熱傳分析,國立臺灣大學工學院應用力學所碩士論文,台北,2007
[43] 徐仁杰,使用聲子波茲曼方程對緊密型奈米尺度複合物之熱傳模擬,國立臺灣大學工學院應用力學所碩士論文,台北,2008
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45178-
dc.description.abstract在半導體內,能量是透過原子或晶格振動來傳遞的,這些振動是靠著物質波來做傳遞,這些能量被量子化後稱之為聲子。在巨觀尺度下,半導體的熱傳是符合傅立葉定律的,但在微觀尺度下,傅立葉定律就無法用來描述微觀下的熱傳行為,這時就必須使用聲子輻射傳輸方程式來探討微觀尺度下的熱傳行為。
聲子輻射傳輸方程式為非線性且包含了微分項與積分項的方程式,要直接求解並不容易。透過BGK方程式(Bhantnagar-Gross-Krook Equation)將碰撞項簡化後,會較好處理。
本文主要探討的是圓柱座標下軸對稱的奈米線在不同材料排列方式下的熱傳特性,分別為:單層圓柱、空心圓柱、同心圓柱、多層圓柱、緊密型圓柱。在數值方法上,方向使用離散座標法(Discrete Ordinate Method)將方向餘弦離散化,在空間上則使用一階迎風算則(Upwind Scheme)來分析問題。由研究結果可以發現,奈米線的等效熱傳導係數不但受到徑向與軸向尺度的影響,也受到界面散射影響甚鉅。
zh_TW
dc.description.abstractEnergy transport in semiconductor is basicly by atomic or crystal vibrations, These vibrations travel within material waves. The energy is quantized and each quantam is called a phonon. On a macroscopic scale, the heat transfer in semiconductor mainly obey the Fourier law. However, on a microscopic scale the heat transfer will no longer follow the Fourier law. Instead, the equation of phonon radiative transfer (EPRT) is developed to study the heat transfer under microscopic scale.
EPRT is a nonlinear equation with intergral and differential terms, which is difficult to solve directly. If we simplify the collision term by Bhatnagar-Gross-Krook Equation, the equation will be easy to solve.
This article is mainly about the heat transfer in the symmetric semiconductor nanowires with different material arrangement under cylindrical coordinates. Several geometries are studied including : single layer nanowires, tubular nanowires, core-shell nanowires, multi-layer nanowires, and composite nanowires. The discrete ordinate method is used for angular discretization; and upwind scheme is used for spatial discretization. The results show that the effective thermal conductivity changes not only with the radius and the length of the nanowires, but also with the boundary thermal resistance.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:07:39Z (GMT). No. of bitstreams: 1
ntu-99-R96543035-1.pdf: 1509549 bytes, checksum: 64c2bb6a2cda2600a410937a645e05fd (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 Ⅰ
中文摘要 Ⅱ
英文摘要 Ⅲ
目錄 Ⅳ
附表目錄 Ⅵ
附圖目錄 Ⅶ
第一章 緒論 1
1.1 引言 1
1.2 微觀熱傳導 1
1.3 文獻回顧 4
1.4 研究內容 6
第二章 聲子輻射熱傳理論 9
2.1 Boltzmann傳輸方程式 9
2.2 鬆弛時間 10
2.2.1 聲子間散射 11
2.2.2 幾何散射 12
2.3 聲子輻射熱傳方程式 12
2.4 邊界條件 14
2.5 界面條件 16
2.5.1 聲異理論模式( AMM ) 17
2.5.2 散異理論模式( DMM ) 18
2.6 射線效應( Ray Effect ) 19
2.7 假散射( False Scattering ) 20
2.8 圓柱座標系統下的聲子輻射傳輸 ............................... 21
第三章 數值方法 27
3.1 方向離散 27
3.1.1 離散座標法( Discrete Ordinate Method ) 27
3.2 空間離散 28
3.2.1 迎風算則 28
3.2.2 空間角度離散 29
3.3 時間離散 30
3.3.1 Euler Method 30
3.4 軸對稱聲子波茲曼能量傳輸方程式 30
3.5 無因次化 32
第四章 模擬結果與討論 37
4.1 單層圓柱奈米線結構 37
4.2 空心圓柱奈米線結構 38
4.3 同心圓柱奈米線結構 39
4.4 多層圓柱奈米線結構 40
4.5 緊密型圓柱奈米線結構 41
第五章 結論與建議 69
參考文獻 71
dc.language.isozh-TW
dc.title使用聲子波茲曼方程對軸對稱奈米線之熱傳模擬zh_TW
dc.titleThermal Conductivity Modeling of Axisymmetric Nanowires Using Phonon Boltzmann Model Equationen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃俊誠,黃家健,謝澤揚
dc.subject.keyword微觀熱傳,聲子輻射傳輸方程式,奈米線,離散座標法,迎風算則,zh_TW
dc.subject.keywordMicroscale Heat Transfer,Equation of Phonon Radiative Transport,Nanowires,Discrete Ordinate method,Upwind scheme,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2010-02-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved