Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林琬琬(Wan-Wan Lin)
dc.contributor.authorHui-Ju Hoen
dc.contributor.author何蕙如zh_TW
dc.date.accessioned2021-06-15T04:07:01Z-
dc.date.available2015-03-12
dc.date.copyright2010-03-12
dc.date.issued2010
dc.date.submitted2010-02-08
dc.identifier.citationAkira, S., and Takeda, K. (2004). Toll-like receptor signalling. Nat Rev Immunol 4, 499-511.
Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801.
Alexander, D.R. (2000). The CD45 tyrosine phosphatase: a positive and negative regulator of immune cell function. Semin Immunol 12, 349-359.
Aoki, N., and Matsuda, T. (2000). A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. J Biol Chem 275, 39718-39726.
Aridor, M., and Balch, W.E. (1999). Integration of endoplasmic reticulum signaling in health and disease. Nat Med 5, 745-751.
Aung, H.T., Schroder, K., Himes, S.R., Brion, K., van Zuylen, W., Trieu, A., Suzuki, H., Hayashizaki, Y., Hume, D.A., Sweet, M.J., and Ravasi, T. (2006). LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB J 20, 1315-1327.
Bach, E.A., Aguet, M., and Schreiber, R.D. (1997). The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15, 563-591.
Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P., and Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2, 326-332.
Beutler, B.A. (2009). TLRs and innate immunity. Blood 113, 1399-1407.
Bowie, A., and O'Neill, L.A. (2000). The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 67, 508-514.
Brancho, D., Tanaka, N., Jaeschke, A., Ventura, J.J., Kelkar, N., Tanaka, Y., Kyuuma, M., Takeshita, T., Flavell, R.A., and Davis, R.J. (2003). Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17, 1969-1978.
Brune, B., von Knethen, A., and Sandau, K.B. (1998). Nitric oxide and its role in apoptosis. Eur J Pharmacol 351, 261-272.
Castrillo, A., Diaz-Guerra, M.J., Hortelano, S., Martin-Sanz, P., and Bosca, L. (2000). Inhibition of IkappaB kinase and IkappaB phosphorylation by 15-deoxy-Delta(12,14)-prostaglandin J(2) in activated murine macrophages. Mol Cell Biol 20, 1692-1698.
Cauwels, A. (2007). Nitric oxide in shock. Kidney Int 72, 557-565.
Chan, E.D., and Riches, D.W. (2001). IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. Am J Physiol Cell Physiol 280, C441-450.
Chen, Z., Gibson, T.B., Robinson, F., Silvestro, L., Pearson, G., Xu, B., Wright, A., Vanderbilt, C., and Cobb, M.H. (2001). MAP kinases. Chem Rev 101, 2449-2476.
Chen, Z.J. (2005). Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7, 758-765.
Chen, Y., Wen, R., Yang, S., Schuman, J., Zhang, E.E., Yi, T., Feng, G.S., and Wang, D. (2003). Identification of Shp-2 as a Stat5A phosphatase. J Biol Chem 278, 16520-16527.
Chen, J.C., Ho, F.M., Pei-Dawn Lee, C., Chen, C.P., Jeng, K.C., Hsu, H.B., Lee, S.T., Wen Tung, W., and Lin, W.W. (2005). Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 521, 9-20.
Christen, V., Treves, S., Duong, F.H., and Heim, M.H. (2007). Activation of endoplasmic reticulum stress response by hepatitis viruses up-regulates protein phosphatase 2A. Hepatology 46, 558-565.
Cieslik, K.A., Deng, W.G., and Wu, K.K. (2006). Essential role of C-Rel in nitric-oxide synthase-2 transcriptional activation: time-dependent control by salicylate. Mol Pharmacol 70, 2004-2014.
Cunha, F.Q., Moncada, S., and Liew, F.Y. (1992). Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-gamma in murine macrophages. Biochem Biophys Res Commun 182, 1155-1159.
Cusson-Hermance, N., Khurana, S., Lee, T.H., Fitzgerald, K.A., and Kelliher, M.A. (2005). Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-kappaB activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem 280, 36560-36566.
David, M., Chen, H.E., Goelz, S., Larner, A.C., and Neel, B.G. (1995). Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol 15, 7050-7058.
Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., and Chen, Z.J. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-361.
Deng, W.G., Tang, S.T., Tseng, H.P., and Wu, K.K. (2006). Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 108, 518-524.
Deng, W.G., and Wu, K.K. (2003). Regulation of inducible nitric oxide synthase expression by p300 and p50 acetylation. J Immunol 171, 6581-6588.
Ding, A.H., Nathan, C.F., and Stuehr, D.J. (1988). Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141, 2407-2412.
Du, S., Hiramatsu, N., Hayakawa, K., Kasai, A., Okamura, M., Huang, T., Yao, J., Takeda, M., Araki, I., Sawada, N., Paton, A.W., Paton, J.C., and Kitamura, M. (2009). Suppression of NF-kappaB by cyclosporin a and tacrolimus (FK506) via induction of the C/EBP family: implication for unfolded protein response. J Immunol 182, 7201-7211.
Ejima, K., and Perrella, M.A. (2004). Alteration in heme oxygenase-1 and nitric oxide synthase-2 gene expression during endotoxemia in cyclooxygenase-2-deficient mice. Antioxid Redox Signal 6, 850-857.
Fearon, D.T., and Locksley, R.M. (1996). The instructive role of innate immunity in the acquired immune response. Science 272, 50-53.
Franklin, C.C., and Kraft, A.S. (1997). Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J Biol Chem 272, 16917-16923.
Gao, J., Morrison, D.C., Parmely, T.J., Russell, S.W., and Murphy, W.J. (1997). An interferon-gamma-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-gamma and lipopolysaccharide. J Biol Chem 272, 1226-1230.
Ghosh, S., May, M.J., and Kopp, E.B. (1998). NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16, 225-260.
Greenhalgh, C.J., and Hilton, D.J. (2001). Negative regulation of cytokine signaling. J Leukoc Biol 70, 348-356.
Hacker, H., and Karin, M. (2006). Regulation and function of IKK and IKK-related kinases. Sci STKE 2006, re13.
Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L.C., Wang, G.G., Kamps, M.P., Raz, E., Wagner, H., Hacker, G., Mann, M., and Karin, M. (2006). Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204-207.
Hayakawa, K., Hiramatsu, N., Okamura, M., Yao, J., Paton, A.W., Paton, J.C., and Kitamura, M. (2008). Blunted activation of NF-kappaB and NF-kappaB-dependent gene expression by geranylgeranylacetone: involvement of unfolded protein response. Biochem Biophys Res Commun 365, 47-53.
Hayakawa, K., Hiramatsu, N., Okamura, M., Yamazaki, H., Nakajima, S., Yao, J., Paton, A.W., Paton, J.C., and Kitamura, M. (2009). Acquisition of anergy to proinflammatory cytokines in nonimmune cells through endoplasmic reticulum stress response: a mechanism for subsidence of inflammation. J Immunol 182, 1182-1191.
Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10, 3787-3799.
Held, T.K., Weihua, X., Yuan, L., Kalvakolanu, D.V., and Cross, A.S. (1999). Gamma interferon augments macrophage activation by lipopolysaccharide by two distinct mechanisms, at the signal transduction level and via an autocrine mechanism involving tumor necrosis factor alpha and interleukin-1. Infect Immun 67, 206-212.
Hibbs, J.B., Jr., Taintor, R.R., Vavrin, Z., and Rachlin, E.M. (1988). Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157, 87-94.
Hiramatsu, N., Kasai, A., Hayakawa, K., Yao, J., and Kitamura, M. (2006). Real-time detection and continuous monitoring of ER stress in vitro and in vivo by ES-TRAP: evidence for systemic, transient ER stress during endotoxemia. Nucleic Acids Res 34, e93.
Hoffmann, J.A., Kafatos, F.C., Janeway, C.A., and Ezekowitz, R.A. (1999). Phylogenetic perspectives in innate immunity. Science 284, 1313-1318.
Hu, P., Han, Z., Couvillon, A.D., Kaufman, R.J., and Exton, J.H. (2006). Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26, 3071-3084.
Hu, M.C., Gong, H.Y., Lin, G.H., Hu, S.Y., Chen, M.H., Huang, S.J., Liao, C.F., and Wu, J.L. (2007). XBP-1, a key regulator of unfolded protein response, activates transcription of IGF1 and Akt phosphorylation in zebrafish embryonic cell line. Biochem Biophys Res Commun 359, 778-783.
Huang, H., Rose, J.L., and Hoyt, D.G. (2004). p38 Mitogen-activated protein kinase mediates synergistic induction of inducible nitric-oxide synthase by lipopolysaccharide and interferon-gamma through signal transducer and activator of transcription 1 Ser727 phosphorylation in murine aortic endothelial cells. Mol Pharmacol 66, 302-311.
Ichikawa, T., Zhang, J., Chen, K., Liu, Y., Schopfer, F.J., Baker, P.R., Freeman, B.A., Chen, Y.E., and Cui, T. (2008). Nitroalkenes suppress lipopolysaccharide-induced signal transducer and activator of transcription signaling in macrophages: a critical role of mitogen-activated protein kinase phosphatase 1. Endocrinology 149, 4086-4094.
Ihle, J.N., Nosaka, T., Thierfelder, W., Quelle, F.W., and Shimoda, K. (1997). Jaks and Stats in cytokine signaling. Stem Cells 15 Suppl 1, 105-111.
Inagi, R., Kumagai, T., Nishi, H., Kawakami, T., Miyata, T., Fujita, T., and Nangaku, M. (2008). Preconditioning with endoplasmic reticulum stress ameliorates mesangioproliferative glomerulonephritis. J Am Soc Nephrol 19, 915-922.
Irie-Sasaki, J., Sasaki, T., Matsumoto, W., Opavsky, A., Cheng, M., Welstead, G., Griffiths, E., Krawczyk, C., Richardson, C.D., Aitken, K., Iscove, N., Koretzky, G., Johnson, P., Liu, P., Rothstein, D.M., and Penninger, J.M. (2001). CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409, 349-354.
Jacobs, A.T., and Ignarro, L.J. (2001). Lipopolysaccharide-induced expression of interferon-beta mediates the timing of inducible nitric-oxide synthase induction in RAW 264.7 macrophages. J Biol Chem 276, 47950-47957.
Jiang, H.Y., Wek, S.A., McGrath, B.C., Scheuner, D., Kaufman, R.J., Cavener, D.R., and Wek, R.C. (2003). Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 23, 5651-5663.
Kamijo, R., Harada, H., Matsuyama, T., Bosland, M., Gerecitano, J., Shapiro, D., Le, J., Koh, S.I., Kimura, T., Green, S.J., et al. (1994). Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263, 1612-1615.
Kaneko, M., Niinuma, Y., and Nomura, Y. (2003). Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull 26, 931-935.
Kang, Y.J., Kusler, B., Otsuka, M., Hughes, M., Suzuki, N., Suzuki, S., Yeh, W.C., Akira, S., Han, J., and Jones, P.P. (2007). Calcineurin negatively regulates TLR-mediated activation pathways. J Immunol 179, 4598-4607.
Karaghiosoff, M., Steinborn, R., Kovarik, P., Kriegshauser, G., Baccarini, M., Donabauer, B., Reichart, U., Kolbe, T., Bogdan, C., Leanderson, T., Levy, D., Decker, T., and Muller, M. (2003). Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol 4, 471-477.
Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18, 621-663.
Karin, M., and Greten, F.R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5, 749-759.
Kaufman, R.J. (1999). Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13, 1211-1233.
Kawai, T., and Akira, S. (2006). TLR signaling. Cell Death Differ 13, 816-825.
Kazemi, S., Mounir, Z., Baltzis, D., Raven, J.F., Wang, S., Krishnamoorthy, J.L., Pluquet, O., Pelletier, J., and Koromilas, A.E. (2007). A novel function of eIF2alpha kinases as inducers of the phosphoinositide-3 kinase signaling pathway. Mol Biol Cell 18, 3635-3644.
Kim, Y.M., Lee, B.S., Yi, K.Y., and Paik, S.G. (1997). Upstream NF-kappaB site is required for the maximal expression of mouse inducible nitric oxide synthase gene in interferon-gamma plus lipopolysaccharide-induced RAW 264.7 macrophages. Biochem Biophys Res Commun 236, 655-660.
Kitamura, M. (2008). Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am J Physiol Renal Physiol 295, F323-334.
Kitamura, M. (2009). Biphasic, bidirectional regulation of NF-kappaB by endoplasmic reticulum stress. Antioxid Redox Signal 11, 2353-2364.
Koide, N., Mu, M.M., Hassan, F., Islam, S., Tumurkhuu, G., Dagvadorj, J., Naiki, Y., Mori, I., Yoshida, T., and Yokochi, T. (2007). Lipopolysaccharide enhances interferon-gamma-induced nitric oxide (NO) production in murine vascular endothelial cells via augmentation of interferon regulatory factor-1 activation. J Endotoxin Res 13, 167-175.
Kovarik, P., Stoiber, D., Novy, M., and Decker, T. (1998). Stat1 combines signals derived from IFN-gamma and LPS receptors during macrophage activation. EMBO J 17, 3660-3668.
Kumar, H., Kawai, T., and Akira, S. (2009). Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388, 621-625.
Kyriakis, J.M., and Avruch, J. (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81, 807-869.
Ledeboer, A., Breve, J.J., Poole, S., Tilders, F.J., and Van Dam, A.M. (2000). Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 30, 134-142.
Li, H., and Nord, E.P. (2002). CD40 ligation stimulates MCP-1 and IL-8 production, TRAF6 recruitment, and MAPK activation in proximal tubule cells. Am J Physiol Renal Physiol 282, F1020-1033.
Lim, H.W., New, L., Han, J., and Molkentin, J.D. (2001). Calcineurin enhances MAPK phosphatase-1 expression and p38 MAPK inactivation in cardiac myocytes. J Biol Chem 276, 15913-15919.
Lin, R.J., Chang, B.L., Yu, H.P., Liao, C.L., and Lin, Y.L. (2006). Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J Virol 80, 5908-5918.
Lin, C.F., Tsai, C.C., Huang, W.C., Wang, C.Y., Tseng, H.C., Wang, Y., Kai, J.I., Wang, S.W., and Cheng, Y.L. (2008). IFN-gamma synergizes with LPS to induce nitric oxide biosynthesis through glycogen synthase kinase-3-inhibited IL-10. J Cell Biochem 105, 746-755.
Liu, Y., Shepherd, E.G., and Nelin, L.D. (2007). MAPK phosphatases--regulating the immune response. Nat Rev Immunol 7, 202-212.
Liu, X., Yao, M., Li, N., Wang, C., Zheng, Y., and Cao, X. (2008). CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood 112, 4961-4970.
Lorente, J.A., and Marshall, J.C. (2005). Neutralization of tumor necrosis factor in preclinical models of sepsis. Shock 24 Suppl 1, 107-119.
Lowenstein, C.J., Alley, E.W., Raval, P., Snowman, A.M., Snyder, S.H., Russell, S.W., and Murphy, W.J. (1993). Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci U S A 90, 9730-9734.
Lu, X., Malumbres, R., Shields, B., Jiang, X., Sarosiek, K.A., Natkunam, Y., Tiganis, T., and Lossos, I.S. (2008). PTP1B is a negative regulator of interleukin 4-induced STAT6 signaling. Blood 112, 4098-4108.
Lu, S.C., Wu, H.W., Lin, Y.J., and Chang, S.F. (2009). The essential role of Oct-2 in LPS-induced expression of iNOS in RAW 264.7 macrophages and its regulation by trichostatin A. Am J Physiol Cell Physiol 296, C1133-1139.
Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H.P., and Ron, D. (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18, 3066-3077.
Marletta, M.A., Yoon, P.S., Iyengar, R., Leaf, C.D., and Wishnok, J.S. (1988). Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27, 8706-8711.
Medzhitov, R., and Janeway, C.A., Jr. (1997). Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9, 4-9.
Meier, R., Rouse, J., Cuenda, A., Nebreda, A.R., and Cohen, P. (1996). Cellular stresses and cytokines activate multiple mitogen-activated-protein kinase kinase homologues in PC12 and KB cells. Eur J Biochem 236, 796-805.
Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M., and Tschopp, J. (2004). RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5, 503-507.
Molina-Holgado, E., Vela, J.M., Arevalo-Martin, A., and Guaza, C. (2001). LPS/IFN-gamma cytotoxicity in oligodendroglial cells: role of nitric oxide and protection by the anti-inflammatory cytokine IL-10. Eur J Neurosci 13, 493-502.
Nagaraju, K., Casciola-Rosen, L., Lundberg, I., Rawat, R., Cutting, S., Thapliyal, R., Chang, J., Dwivedi, S., Mitsak, M., Chen, Y.W., Plotz, P., Rosen, A., Hoffman, E., and Raben, N. (2005). Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 52, 1824-1835.
Nathan, C., and Xie, Q.W. (1994). Regulation of biosynthesis of nitric oxide. J Biol Chem 269, 13725-13728.
Nussler, A.K., and Billiar, T.R. (1993). Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54, 171-178.
Oganesyan, G., Saha, S.K., Guo, B., He, J.Q., Shahangian, A., Zarnegar, B., Perry, A., and Cheng, G. (2006). Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208-211.
Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H., and Nakatani, Y. (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953-959.
Okamura, M., Takano, Y., Hiramatsu, N., Hayakawa, K., Yao, J., Paton, A.W., Paton, J.C., and Kitamura, M. (2008). Suppression of cytokine responses by indomethacin in podocytes: a mechanism through induction of unfolded protein response. Am J Physiol Renal Physiol 295, F1495-1503.
O'Neill, L.A., and Bowie, A.G. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7, 353-364.
Ono, K., and Han, J. (2000). The p38 signal transduction pathway: activation and function. Cell Signal 12, 1-13.
Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T. (2003). TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4, 161-167.
Pahl, H.L., and Baeuerle, P.A. (1996). Activation of NF-kappa B by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett 392, 129-136.
Platanias, L.C. (2005). Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5, 375-386.
Purcell, A.W., Todd, A., Kinoshita, G., Lynch, T.A., Keech, C.L., Gething, M.J., and Gordon, T.P. (2003). Association of stress proteins with autoantigens: a possible mechanism for triggering autoimmunity? Clin Exp Immunol 132, 193-200.
Qin, Q.M., Pei, J., Ancona, V., Shaw, B.D., Ficht, T.A., and de Figueiredo, P. (2008). RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1alpha in supporting Brucella replication. PLoS Pathog 4, e1000110.
Ron, D., and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8, 519-529.
Roth, S.Y., Denu, J.M., and Allis, C.D. (2001). Histone acetyltransferases. Annu Rev Biochem 70, 81-120.
Roux, P.P., and Blenis, J. (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68, 320-344.
Sato, S., Sugiyama, M., Yamamoto, M., Watanabe, Y., Kawai, T., Takeda, K., and Akira, S. (2003). Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171, 4304-4310.
Schorey, J.S., and Cooper, A.M. (2003). Macrophage signalling upon mycobacterial infection: the MAP kinases lead the way. Cell Microbiol 5, 133-142.
Schreiber, J., Jenner, R.G., Murray, H.L., Gerber, G.K., Gifford, D.K., and Young, R.A. (2006). Coordinated binding of NF-kappaB family members in the response of human cells to lipopolysaccharide. Proc Natl Acad Sci U S A 103, 5899-5904.
Schroder, M., and Kaufman, R.J. (2005). The mammalian unfolded protein response. Annu Rev Biochem 74, 739-789.
Shkoda, A., Ruiz, P.A., Daniel, H., Kim, S.C., Rogler, G., Sartor, R.B., and Haller, D. (2007). Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology 132, 190-207.
Shuai, K., and Liu, B. (2003). Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3, 900-911.
Simoncic, P.D., Lee-Loy, A., Barber, D.L., Tremblay, M.L., and McGlade, C.J. (2002). The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol 12, 446-453.
Simoncic, P.D., McGlade, C.J., and Tremblay, M.L. (2006). PTP1B and TC-PTP: novel roles in immune-cell signaling. Can J Physiol Pharmacol 84, 667-675.
Stuehr, D.J. (1996). Purification and properties of nitric oxide synthases. Methods Enzymol 268, 324-333.
Sun, H., Charles, C.H., Lau, L.F., and Tonks, N.K. (1993). MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75, 487-493.
Takano, Y., Hiramatsu, N., Okamura, M., Hayakawa, K., Shimada, T., Kasai, A., Yokouchi, M., Shitamura, A., Yao, J., Paton, A.W., Paton, J.C., and Kitamura, M. (2007). Suppression of cytokine response by GATA inhibitor K-7174 via unfolded protein response. Biochem Biophys Res Commun 360, 470-475.
Takeda, K., and Akira, S. (2005). Toll-like receptors in innate immunity. Int Immunol 17, 1-14.
ten Hoeve, J., de Jesus Ibarra-Sanchez, M., Fu, Y., Zhu, W., Tremblay, M., David, M., and Shuai, K. (2002). Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 22, 5662-5668.
Valeyev, N.V., Bates, D.G., Heslop-Harrison, P., Postlethwaite, I., and Kotov, N.V. (2008). Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach. BMC Syst Biol 2, 48.
Wang, S., Raven, J.F., Baltzis, D., Kazemi, S., Brunet, D.V., Hatzoglou, M., Tremblay, M.L., and Koromilas, A.E. (2006). The catalytic activity of the eukaryotic initiation factor-2alpha kinase PKR is required to negatively regulate Stat1 and Stat3 via activation of the T-cell protein-tyrosine phosphatase. J Biol Chem 281, 9439-9449.
Wu, T.R., Hong, Y.K., Wang, X.D., Ling, M.Y., Dragoi, A.M., Chung, A.S., Campbell, A.G., Han, Z.Y., Feng, G.S., and Chin, Y.E. (2002). SHP-2 is a dual-specificity phosphatase involved in Stat1 dephosphorylation at both tyrosine and serine residues in nuclei. J Biol Chem 277, 47572-47580.
Wu, S., Tan, M., Hu, Y., Wang, J.L., Scheuner, D., and Kaufman, R.J. (2004). Ultraviolet light activates NFkappaB through translational inhibition of IkappaBalpha synthesis. J Biol Chem 279, 34898-34902.
Wu, J., Rutkowski, D.T., Dubois, M., Swathirajan, J., Saunders, T., Wang, J., Song, B., Yau, G.D., and Kaufman, R.J. (2007). ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13, 351-364.
Xie, Q.W., Whisnant, R., and Nathan, C. (1993). Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med 177, 1779-1784.
Yamamoto, M., Sato, S., Hemmi, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., Takeuchi, O., Kobayashi, M., Fujita, T., Takeda, K., and Akira, S. (2002). Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324-329.
Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., and Akira, S. (2003). Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-643.
Yamamoto, K., Sato, T., Matsui, T., Sato, M., Okada, T., Yoshida, H., Harada, A., and Mori, K. (2007). Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13, 365-376.
Yamamura, H. (2002). Redox control of protein tyrosine phosphorylation. Antioxid Redox Signal 4, 479-480.
Yaman, I., Fernandez, J., Liu, H., Caprara, M., Komar, A.A., Koromilas, A.E., Zhou, L., Snider, M.D., Scheuner, D., Kaufman, R.J., and Hatzoglou, M. (2003). The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell 113, 519-531.
Yamana, J., Santos, L., and Morand, E. (2009). Enhanced induction of LPS-induced fibroblast MCP-1 by interferon-gamma: involvement of JNK and MAPK phosphatase-1. Cell Immunol 255, 26-32.
Ye, J., Rawson, R.B., Komuro, R., Chen, X., Dave, U.P., Prywes, R., Brown, M.S., and Goldstein, J.L. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6, 1355-1364.
Yoshimura, A., Nishinakamura, H., Matsumura, Y., and Hanada, T. (2005). Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis Res Ther 7, 100-110.
You, M., Yu, D.H., and Feng, G.S. (1999). Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol Cell Biol 19, 2416-2424.
Zhang, K., and Kaufman, R.J. (2008). From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455-462.
Zhang, X., Alley, E.W., Russell, S.W., and Morrison, D.C. (1994). Necessity and sufficiency of beta interferon for nitric oxide production in mouse peritoneal macrophages. Infect Immun 62, 33-40.
Zhao, Q., Wang, X., Nelin, L.D., Yao, Y., Matta, R., Manson, M.E., Baliga, R.S., Meng, X., Smith, C.V., Bauer, J.A., Chang, C.H., and Liu, Y. (2006). MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med 203, 131-140.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45163-
dc.description.abstract目前已有研究指出,當巨噬細胞受感染或是在發炎的情形下會產生內質網壓力,然而對於內質網壓力在發炎中所扮演的角色仍不清楚。已知內質網壓力可誘導一些訊息傳遞路徑及活化基因轉錄因子,進而引起發炎反應。然而近年來也有研究結果顯示未折疊蛋白反應(unfolded protein response,UPR)具有抗發炎的作用,但詳細的分子機制尚需進一步的探討。巨噬細胞是宿主先天性免疫重要的第一道防線,目前對於內質網壓力和其他發炎刺激物質在巨噬細胞中互相作用後所產生的影響還不清楚。因此,在本篇研究中我們將利用tunicamycin (TM),以及brefeldin A (BFA)為內質網壓力誘導劑,以老鼠巨噬細胞RAW264.7 及小神經膠質細胞BV-2 為模式來探討內質網壓力在內毒素lipopolysaccharide (LPS) 和interferons (IFNs) 所活化的發炎反應中所扮演的角色。由實驗結果得知,在老鼠巨噬細胞RAW264.7 中內質網壓力誘導劑TM 及BFA 能抑制LPS 誘導的iNOS 蛋白表現及NO 生成。此抑制作用是在iNOS 基因轉錄的層面,和細胞的生存率無關。此外,LPS 刺激3 小時後給予TM 及BFA 仍能抑制LPS 誘導的iNOS 及NO 表現,顯示出內質網壓力誘導劑的抑制作用可能是在LPS 活化的晚期訊息傳遞路徑或是在基因轉錄的層面上。由實驗結果證實,內質網壓力誘導劑對於LPS 所活化的早期訊息傳遞路徑,例如IKK 磷酸化,IkBa降解,p65 細胞核轉移以及MAPKs 活化等訊息傳遞上沒有影響。然而我們發現內質網壓力誘導劑會抑制LPS 活化的晚期NF-kB 家族轉錄因子和iNOS 啟動子區域的親和力,同時也抑制了RelB 細胞核轉移以及p300 這個共活化劑的表現。之前有報導指出p300 對於組蛋白H3 以及NF-kB 家族轉錄因子的乙醯化很重要,因此我們的實驗結果顯示出內質網壓力誘導劑能藉由影響p300 表現來抑制LPS 的發炎反應。此外,我們也發現內質網壓力誘導劑會抑制LPS 及IFNs 活化的STAT1 磷酸化。STAT1 磷酸化已經被報導對於LPS 活化iNOS 表現有協同的作用。當我們分別前處理細胞鈣離子敖合劑BAPTA/AM、攜鈣素抑制劑W7、以及不含鈣離子的細胞培養液,發現原本受內質網壓力誘導劑抑制的STAT1 磷酸化被回復了。結果亦顯示出內質網壓力誘導劑會造成細胞外鈣離子流入胞內,因此也證明了鈣離子確實會參與內質網壓力誘導劑抗發炎的作用。另外,我們亦利用廣效性的protein tyrosine phosphatases 抑制劑sodium orthovanadate 前處理細胞,發現內質網壓力誘導劑原本抑制STAT1 磷酸化的作用也被回復了。由此可知,內質網壓力誘導劑會活化細胞中某一種tyrosinephosphatase。由更進一步的實驗發現內質網壓力誘導劑會活化MKP-1 這個具有雙重protein phosphatase 功能的蛋白表現。MKP-1 已被報導能造成STAT1 去磷酸化,而此蛋白的表現會受到IFN-y負調控,但為一個能受calcineurin 正調控的蛋白。因此我們亦利用鈣離子敖合劑BAPTA/AM 及calcineurin 抑制劑前處理細胞,來釐清MKP-1 和鈣離子的關係。由實驗結果發現,內質網壓力誘導劑抑制STAT1 磷酸化的作用的確會受FK-506 回復,且內質網壓力誘導劑會增加MKP-1 的表現。綜合所有的實驗結果,我們發現在LPS 或IFNs 所活化的巨噬細胞中,未折疊蛋白反應的抗發炎作用主要是藉由影響RelB 細胞核轉移,p300 的表現以及活化鈣離子/攜鈣素/calcineurin 所調控的MKP-1 表現而產生的。本研究的結果不僅能深入了解未折疊蛋白反應的抗發炎作用機轉,更能提供新的標靶分子作為未來抗發炎藥物之研發的學理依據。zh_TW
dc.description.abstractEndoplasmic reticulum (ER) stress resulting from the accumulation of unfolded or misfolded proteins in the ER is known to be induced in infectious and inflammatory conditions. Once ER stress happens, unfolded protein responses (UPR) can be elicited trying to compensate for ER stress. Currently the role of ER stress in inflammatory response still remains elusive and debatable. ER stress-mediated activation of ER sensors can induce signal cascades and activate transcription factors for inflammatory gene responses. Some evidences nevertheless indicate anti-inflammatory outcome resulting from the UPR. Since macrophages are the first line of innate immunity, and real outcome upon ER stress interactive with other inflammatory stimuli has not been elucidated, in this study we used tunicamycin (TM) and brefeldin A (BFA) as ER stressors, and murine RAW264.7 macrophages and BV-2 microglia as cell models to clarify the role of UPR in lipopolysaccharide (LPS)- and interferons (IFNs)-mediated inflammatory responses. Our results revealed the ability of ER stressors (TM and BFA) to attenuate LPS-elicited iNOS gene expression and NO production, which was unrelated to cell viability. Moreover, post-treatment with TM or BFA at 3 h as compared to LPS still can inhibit LPS-induced iNOS/NO expression, suggesting that such inhibition occurs either at the late signals evoked by LPS or at the transcriptional machinery. Confirming our suggestion, we did not observe any effects of ER stressors on the early upstream signals evoked by LPS, including IKK phosphorylation, IkBa degradation, p65 nuclear translocation and three MAPKs activation. However, we found that ER stressors can block NF-kB binding to specific DNA elements in the iNOS promoter in late phase signaling evoked by LPS, as well as attenuate RelB nuclear translocation. Results suggest that inhibition of p300 expression, which is critical for histone H3 and NF-kB family acetylation, is involved in the anti-inflammatory actions of ER stressors. Furthermore, we also found that ER stressors could block LPS- and IFNs (a,b, and y)-mediated STAT1 phosphorylation; the latter has synergistic effect on LPS-induced iNOS expression. When treating cells with Ca2+ chelator BAPTA/AM, calmodulin inhibitor W7 or Ca2+ free medium, the inhibitory effect of ER stressors on STAT1 phosphorylation was abrogated. Moreover, UPR elicited influx of extracellular Ca2+. These results suggest the involvement of downstream effector of calmodulin in the negative regulatory effect of ER stressors. Studies with sodium orthovanadate, a broad-spectrum inhibitor of protein tyrosine phosphatases, suggest activation of tyrosine phosphatase accounts for the inhibitory effect of ER stressors on IFNs signaling. Furthermore, we observed that ER stressors could induce MKP-1 expression, which is a newly identified protein phosphatase targeting on STAT1, and can be down-regulated by IFN-y. Cells pretreated with BAPTA/AM or calcineurin inhibitor FK-506 could block the effect of TM on STAT1 phosphorylation. Taken together, these results suggest that attenuation of p300 expression, RelB nuclear translocation and induction of Ca2+/CaM/calcineurin-dependent MKP-1 contribute to the anti-inflammatory actions of ER stress in LPS- and IFNs-activated macrophages. This study not only provides advanced understanding of the anti-inflammatory mechanisms resulting from ER stress, but also provides defined targets for the development of anti-inflammatory agents.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:07:01Z (GMT). No. of bitstreams: 1
ntu-99-R96443007-1.pdf: 3423979 bytes, checksum: 2bfd263f44d76ba7126c3e167b91b7bc (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAbbreviations 2
Abstract 7
中文摘要 10
Introduction 12
Materials and Methods 36
Results 47
Discussion 62
Figures 73
Appendix 99
References 104
dc.language.isoen
dc.subject雙重特異性蛋白質磷酸&#37238zh_TW
dc.subject巨噬細胞zh_TW
dc.subject未折疊蛋白反應zh_TW
dc.subject抗發炎機制zh_TW
dc.subjectmacrophageen
dc.subjectMKP1en
dc.subjectanti-inflammatoryen
dc.subjectUPRen
dc.title在活化的巨噬細胞中未折疊蛋白反應抗發炎機制之探討zh_TW
dc.titleMolecular mechanisms of anti-inflammatory actions of unfolded protein response in activated macrophagesen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊春茂(Chuen-Mao Yang),顏茂雄(Mao-Hsiung Yen),蘇銘嘉(Ming-Jai Su)
dc.subject.keyword巨噬細胞,未折疊蛋白反應,抗發炎機制,雙重特異性蛋白質磷酸&#37238,1,zh_TW
dc.subject.keywordmacrophage,UPR,anti-inflammatory,MKP1,en
dc.relation.page124
dc.rights.note有償授權
dc.date.accepted2010-02-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
3.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved