請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45106完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張堂贀(Tang-Hsien, Chang) | |
| dc.contributor.author | Li-Kai Yang | en |
| dc.contributor.author | 楊瓅凱 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:04:43Z | - |
| dc.date.available | 2010-10-19 | |
| dc.date.copyright | 2010-02-24 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-09 | |
| dc.identifier.citation | 1.交通部運輸研究所 (1986a),交通號誌規劃手冊。
2.交通部運輸研究所 (1986b),交通管制設施規劃與設計手冊--交通號誌篇。 3.交通部運輸研究所 (1991),台灣地區公路容量手冊。 4.交通部運輸研究所 (2001),2001年台灣地區公路容量手冊。 5.林豐博、曾平毅、林國顯、蘇振維、鄭嘉盈、張舜淵 (2004),台灣地區多車道郊區公路容量及特性研究(二),交通部運輸研究所、中華民國運輸學會合作辦理。 6.何志宏 (1990),引進全動態時制法交通策略應用於國內都市號誌設計,交通部運輸研究所。 7.何志宏 (2001),台灣地區先進交通管理系統中都市號誌控制邏輯標準化與標準作業程序之研究-定時式�動態式控制邏輯標準化,交通部運輸研究所。 8.朱松偉 (1991),適應性號誌控制邏輯之微觀分析,成大交通管理科學研究所碩士論文。 9.朱小玲 (2005),交控任務邏輯及績效評估之研究,台大土木工程學研究所碩士論文。 10.黃國平 (1983),混合車流二維座標模擬模式之建立及驗證,國立台大土木工程學研究所碩士論文。 11.許添本、蘇昭銘 (1992),「交通號誌系統時相設計觀念之探討」,中華民國運輸學會第七屆論文研討會論文集,頁435-449。 12.陳建德 (1989),獨立路口交通號誌控制方式之模擬研究,成大交通管理科學研究所碩士論文。 13.張堂賢 (2001),台灣地區智慧型運輸系統實驗城規劃計劃 (一)&(二),交通部科技顧問室、中華智慧型運輸系統協會合作辦理。 14.張堂賢、張智華 (2004),「應用智慧型號誌控制器執行適應性交通控制之研究」,運輸計劃季刊,第三十三卷第一期,頁203-225。 15.張堂賢 (2006),符合NTCIP的無線寬頻ATMS交控示範系統(二) ,交通部科技顧問室、中華智慧型運輸系統協會合作辦理。 16.AASHTO (2001), A Policy on Geometric Design of Highways and Streets. 17.Chen, H., Cohen, S.L., Gartner N.H., and Liu, C.C. (1987), “Simulation Study of OPAC: A Demand-Responsive Strategy for Traffic Signal Control,” Proceedings of the 10th International Symposium on Transportation and Traffic Theory, pp233-249. 18.FHWA (Federal Highway Administration) (2005), Traffic Control Systems Handbook, institute of Transportation Engineers. 19.Fang, C. F. and Lily E. (2008), “Capability-Enhanced Microscopic Simulation With Real-Time Traffic Signal Control,” IEEE Transactions on Intelligent Transportation System, Vol. 9, No. 4, pp. 625-632. 20.Gartner, N. H. (1983), “OPAC: A Demand-Responsive Strategy for Traffic Signal Control,” Transportation Research Record 906, TRB, pp.75-81. 21.Hong, Li. and Panos, D. P. (2004), “Traffic Adaptive Control for Oversaturated Isolated Intersections: Model Development and Simulation Testing,” Journal of Transportation Engineering, Vol. 130, No. 5, pp. 594-601 22.Lewis, C. D. (1982), “Industrial and Business Forecasting Method,” ButterworthScientific, pp.38-41. 23.Lin, F. B. (1988), “A Comparative Analysis of Two Logics for Adaptive Control of Isolated Intersections,” presented at the 67th Annual Meeting of transportation Research Board, Washington, D.C.. 24.Lo, H. K., Chan Y. C., Andy H. F. Chow and William H. K. L. (2001), “A New Dynamic Traffic Control System: Performance of Adaptive Control Strategies for Over-saturated Traffic.” in Proc. 4th IEEE Conf. Intelligent Transportation Systems, pp. 406-411. 25.Li, H. and Prevedouros, P. D. (2004), “Traffic Adaptive Control for Oversaturated Isolated Intersections: Model Development and Simulation Testing,” Journal of Transportation Engineering, Vol. 130, No. 5, pp. 594-601 26.Lee, J., Abdulhai, B., Shalaby, A. and Chung, E. H. (2005), “Real-Time Optimization for Adaptive Traffic Signal Control Using Genetic Algorithms,” Journal of Intelligent Transportation Systems, Vol.9 No.3, pp.111-122. 27.Mirchandani, P. and Head, L. (2001), “A Real-time Traffic Signal Control System: Architecture, Algorithms, and Analysis,” Transportation Research Part C: Emerging Technologies, Vol.9 No.6, pp. 415-432. 28.May, A.D. (1990), Traffic Flow Fundamentals, New Jersey: Prentice-Hall Inc. 29.Srinivasan, D., Min, C., and Ruey, L. (2006), “Neural Networks for Real-Time Traffic Signal Control,” IEEE Transactions on Intelligent Transportation Systems, Vol.7 No.3, pp.261-272. 30.Teply S., Allingham D. I., Richardson D. B., and Stephenson B. W. (1995), Canadian Capacity Guide for Signalized Intersections, Institute of Transportation Engineers, District 7. 31.Transportation Research Board(2000), Highway Capacity Manual 2000. TRB Publications, Washington D.C.. 32.PTV (Planung Transport Verkehr) (2008), VISSIM 5.10 User Manual. 33.Vigos, G., Papageorgiou, M., and Wang, Y. (2008), “Real-Time Estimation of Vehicle-Count within Signalized Links,” Transportation Research Part C: Emerging Technologies, Vol.16 No.1, pp. 18-35. 34.Vincent, R. A., and Young, J. R. (1986), “Self-Optimising Traffic Signal Control Using Microprocessors – The TRRL MOVA Strategy for Isolated Intersections,” Traffic Engineering and Control, Vol. 27, No. 7, pp. 385-387. 35.Wang, Y. and Papageorgiou, M. (2005), “Real-Time Freeway Traffic State Estimation Based on Extended Kalman Filter: a general approach,” Transportation Research Part B: Methodological, Vol.39 No.2, pp. 141-167. 36.Webster, F. V. (1958), “Traffic Signal Settings,” Road Research Technical Paper, NO.39, Road Research Laboratory, Her Majesty’s Stationery Office, London, U.K.. 37.Wolshon, B. and Taylor, W. (1999), “Impact of Adaptive Signal Control on Major and Minor Approach Delay,” Journal of Transportation Engineering, Vol. 125, No. 1, January/February, pp. 30-38. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45106 | - |
| dc.description.abstract | 隨著社會經濟的快速發展,都市中的車流量也極速的增加。在道路容量無法提供大量的車流需求時,往往會造成交通壅塞問題。為解決交通壅塞問題最常見的手法有道路基礎設施的擴建及交通管理策略。然而當道路基礎設施無法擴建時,便只有針對交通管理著手,其中號誌控制邏輯是很重要的交通管理項目之一。相對於早期號誌控制邏輯採用的定時控制(Time Of Day)已無法因應交通車流的需求變化,鑑於定時控制邏輯將會浪費時間、燃料及金錢,對此國內外皆有許多學者投入改善定時控制所產生之問題,而現今針對此問題之研究,已發展出許多更符合需求的號誌控制邏輯,如半觸動控制、全觸動控制、運用卡曼濾波、基因演算法或類神經網路於號誌控制邏輯、二元決策號誌控制邏輯,以及程序性決策號誌控制邏輯等。
雖然上述各種號誌控制邏輯模式在國內外已有許多相關研究,但比較不同號誌控制邏輯之運作績效以建立各號誌控制邏輯在不同車流情境下之適用時機卻較為瑣碎稀少。因此本研究比較數種不同型式之常用交通號誌控制邏輯,包括定時控制、全觸動控制、運用卡曼濾波之動態計算號誌控制,以及改良OPAC(Optimization Policies Adaptive Control)。利用微觀車流模擬方式模擬四種獨立四叉路口,並同步模擬不同號誌控制邏輯,再以指數分配函數產生不同交通車流情境,並以微觀車流模擬方式累計車輛停等延滯,分析比較此四種號誌控制邏輯在不同情境下之車輛停等延滯時間,獲得在不同交通車流情境下較佳實施之號誌控制邏輯。研究結果將可作為選擇號誌控制邏輯之判斷標準,依此訂定客觀的號誌控制邏輯切換準則,對未來發展智慧型號誌系統將能更有效應付各種不同車流情境之變化。 | zh_TW |
| dc.description.abstract | With the rapid development of economy, vehicle flow has increased alarmingly in the metropolis. This usually leads to traffic jams when the road capacity fails to satisfy the traffic demand. General methods to solve this problem include extending road infrastructure and setting up strategies for traffic management. If the former fails, better traffic management has to be adopted, one important object of which is traffic signal logic. Since earlier traffic signal control logic which adopted time-of-day (TOD) scheduling/pre-time control cannot meet the need of traffic flow and variation, many traffic signal control logics such as half-actuated control, full-actuated control, Kalman Filter, Gene Arithmetic, and Quasi-nerve Network adopted for signal traffic control logic and dualistic traffic control logic, and program-based signal traffic control logic were developed.
Although the traffic signal control logics mentioned above have been found in many studies, the criterion for selecting an optimal control-logic along traffic conditions through assessments in the same level regarding their performances and are few. Therefore, four types of usual traffic control logics are compared in this paper including time-of-day pre-time control, full-actuated control, dynamic -computing control with Kalman Filter, and adaptive control improved from the Optimization Policies for Adaptive Control. A micro-traffic flow simulation synchronously operated with multiple control logics is developed herein to manipulate a signalized intersection in various traffic patterns. On the simulation, the number of passing vehicles, stop vehicles, total waiting time, and total delay time in each period are calculated among these four types of control under different traffic flow contexts. Based on the results and comparisons, the criterion for selecting an optimal control-logic along traffic conditions in terms of traffic parameters is obtained. The resulted criterion can be taken as online traffic control execution to switching control logic in terms of real-time traffic conditions as well as a reference of developing an intelligent signal controller or system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:04:43Z (GMT). No. of bitstreams: 1 ntu-99-F93521509-1.pdf: 12706258 bytes, checksum: 2f275634f6a4e04aa698412a48996cf8 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 ii 英文摘要 iv 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究內容與假設前題 3 1.4 研究範圍與流程 3 第二章 文獻回顧 6 2.1 號誌控制邏輯回顧 6 2.2 號誌控制邏輯績效分析研究 10 2.2.1 國外分析研究 10 2.2.2 國內分析研究 12 2.3 評估號誌控制邏輯績效指標 15 2.3 小結 18 第三章 號誌控制邏輯及演算說明 21 3.1號誌控制邏輯邏輯 21 3.1.1全觸動控制 22 3.1.2運用卡曼濾波之動態計算號誌控制 24 3.1.3改良OPAC 27 3.2 號誌控制邏輯之參數設計分析 31 3.3 小結 33 第四章 車流模擬模式與設計 35 4.1車流模擬系統 35 4.2模擬實驗設計 43 4.3車流模擬模式驗證 46 4.3.1現況車流調查驗證 46 4.3.2微觀車流模擬軟體驗證 48 第五章 模擬績效分析與評估 52 5.1敏感度分析 52 5.1.1 全觸動控制敏感度分析 52 5.1.2 動態計算控制敏感度分析 56 5.1.3適應性控制敏感度分析 60 5.2模擬績效結果 64 5.3各號誌績效差異顯著性分析 71 5.4號誌控制邏輯績效門檻建立 72 5.4.1路口幾何(1)分析結果 80 5.4.2路口幾何(2)分析結果 83 5.4.3路口幾何(3)分析結果 85 5.4.4路口幾何(4)分析結果 87 5.4.5路口幾何(5)分析結果 89 5.4.6路口幾何(6)分析結果 91 5.5 結果探討與實例運用 94 第六章 結論與建議 96 6.1結論 96 6.2建議 99 參考文獻 101 附錄A 104 附錄B 129 | |
| dc.language.iso | zh-TW | |
| dc.subject | 動態計算號誌控制 | zh_TW |
| dc.subject | 適應性控制 | zh_TW |
| dc.subject | 全觸動控制 | zh_TW |
| dc.subject | 交通控制 | zh_TW |
| dc.subject | 車流模擬 | zh_TW |
| dc.subject | Adaptive Control | en |
| dc.subject | Dynamic Calculated Control | en |
| dc.subject | Full Actuated Control | en |
| dc.subject | Traffic Control | en |
| dc.subject | Traffic Flow Simulation | en |
| dc.title | 以延滯指標評估多種交通號誌控制邏輯之適用時機
—以獨立路口簡單二時相為例 | zh_TW |
| dc.title | Applicable Condition Study on Several Traffic Signal Control Algorithms by Delay Criterion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張學孔,吳健生,曾平毅,魏健宏,黃文鑑 | |
| dc.subject.keyword | 車流模擬,交通控制,全觸動控制,動態計算號誌控制,適應性控制, | zh_TW |
| dc.subject.keyword | Traffic Flow Simulation,Traffic Control,Full Actuated Control,Dynamic Calculated Control,Adaptive Control, | en |
| dc.relation.page | 164 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-02-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 12.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
