Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45094
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃武良
dc.contributor.authorYing-Ju Changen
dc.contributor.author張英如zh_TW
dc.date.accessioned2021-06-15T04:04:14Z-
dc.date.available2013-03-11
dc.date.copyright2010-03-11
dc.date.issued2010
dc.date.submitted2010-02-10
dc.identifier.citationAlexander R., Kagi, R. I., Noble, R. A., 1983, Identification of the bicyclic sesquiterpenes, drimane and eudesmane in petroleum. Journal of the Chemical Society, Chemical Communications, 226-228.
Alexander, R., Kagi, R. I., Noble, R. A., Volkman, J. K., 1984, Identification of some bicyclic alkanes in petroleum. Organic Geochemistry, 6, 63-70.
Alexander, R., Kagi, R.I., Rowland, S.J., Sheppard, P.N.,Chirila, T.V., 1985. The effects of thermal maturation on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleums. Geochim. Cosmochim. Acta 49, 385-395.
Aquino Neto, F.R., Trendel, J.M., Restle, A., Connan, J., Albrecht, P.A., 1983, Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums. In: Bjoroy, M.et al. Editor, 1983. Advances in Organic Geochemistry, 1981 John Wiley and Sons Limited, Chichester, p. 659–667.
Behar, F., Vandenbroucke, M., 1997, Thermal cracking of kerogen in open and closed systems:determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Organic Geochemistry, 26, 321-339.
Blumer, M., Guillard, R. R., Chase, T., 1971, Hydrocarbons of marine phytoplankton. International Journal of Life in Oceans, Coastal Waters, 8, 180-183.
Brassell, S. C., Eglinton, G., Mo, F. J., 1986, Biological marker compounds as indicators of the depositional history of the Maoming oil shale. Organic Geochemistry, 10, 927-941.
Burgess, J. D., 1974, Microscopic examination of kerogen (dispersed organic matter) in petroleum exploration. Geol. Soc. Am.,Special Paper 153, p. 19-30.
Carlson, R. M. K., Teerman, S. C., Moldowan, J. M., Jacobson, S. R., Chan, E. I., Dorrough, K.S., Seetoo, W.C., Mertani, B., 1993, High temperature gas chromatography of high-wax oils: Indonesian Petroleum Association, 22nd Annual Convention Proceedings, Jakarta, Indonesia, p. 483-507.
Clark, R. C. Jr., Blumer, M., 1967, Distribution of n-paraffins in marine organisms and sediment. Limnol. Oceanogr, 12, 79-87.
Davis, A., 1978, The reflectance of coal. In: Karr, C. Jr. (ed.):Analytical Methods for Coal and Coal Products. Academic Press, Inc., New York, p. 27-81.
Ekweozor, C. M., Udo, O.T., 1988, The oleananes: Origin, maturation, and limits of occurrence in Southern Nigeria sedimentary basins, in L. Mattavelli, and L. Novelli, eds., Advances in Organic Geochemistry 1987, Organic Geochemistry, 13, Pergamon Press, 131-140.
Hall, P. B., Douglas, A.G., 1983, The distribution of cyclic alkanes in two lacustrine deposits, in M. Bjoroy, and et al., eds., Advances in Organic Geochemistry 1981: New York, J. Wiley and Sons, p. 576-587.
Hase, A., Hites, R.A.,1976, On the origin of polycyclic aromatic hydrocarbons in recent sediments: biosynthesis by anaerobic bacteria, Geochim. Cosmochim. Acta, 40, 1141-1143.
Holba, A.G., Tegelaar, E., Ellis, L., Singletary, M.S., Albrecht, P., 2000, Tetracyclic polyprenoids: Indicators of freshwater (lacustrine) algal input: Geology, 28, 251-254.
Horsifield, B., Rullkotter, J., 1994, Diagensis, catagenesis, and metagenesis of organic matter. In:Magoon, L.B., Dow, W.G., (Ed.), The petroleum system-from source to trap. AAPG memoir 60, AAPG, U.S.A., p. 189-200.
Huang, W.-Y., Meinschein, W. G., 1979, Sterols as ecological indicators: Geochimica et Cosmochimica Acta, 43, 739-745.
Huang, W. L., 1996, A new pyrolysis technique using diamond anvil cell: In-situ visualization of kerogen transformation. Organic Geochemistry, 24, 95-107.
Hughes, W.B., Holba, A.G., Dzou, L.I.P., 1995, The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks: Geochimica et Cosmochimica Acta, 59, 3581-3598.
Hsieh, M., Philp, R.P., 2001, Ubiquitous occurrence of high molecular weight hydrocarbons in crude oils: Organic Geochemistry, 32, 955-966.
Inan, S., Yalcin, M. N., Mann, U., 1998, Expulsion of oil from petroleum source rocks: inferences from pyrolysis of samples of unconventional grain size. Organic Geochemistry, 29, 45–61.
Lewan, M.D., 1997, Experiments on the role of water in petroleum formation.Geochimica et Cosmochimica Acta, 61, 3691-3723.
Jiang, Z., Fowler, M.G., 1986, Carotenoid-derived alkanes in oils from northwestern China, in D. Leythaeuser, and J. Rullkotter, eds., Advances in Organic Geochemistry 1985, Organic Geochemistry, 10, Pergamon, 831-839.
Komorek, J., Morga, R., Pozzi, M., 2003, Vitrinite reflectance property change during heating under inert conditions. International Journal of Coal Geology , 54, 125-136.
Ko‥ster, J., van Kaam-Peters, H. M. E., Koopmans, M. P., de Leeuw, J. W., Sinninghe Damste’, J. S., 1997, Sulphurisation of homohopanoids:Effects on carbon number distribution, speciation, and 22S/22R epimer ratios. Geochim. Cosmochim. Acta, 61, 2431–2452.
Kvalheim, O.M., Christy, A.A., Telnns, N., Bjurseth, A., 1987, Maturity determination of organic matter in coals using the methylphenanthrene distribution. Geochim. Cosmochim. Acta, 51, 1883-1888.
McKirdy, D. M., Aldridge, A. K., Ypma, P. J. M., 1983, A geochemical comparison of some crude oil from Pre-Ordovician carbonate rocks. In: Advances in Organic Geochemistry 1981 (M. Bjoroy, C. Albrecht, C. Cornford, et al., eds.), John Wiley&Sons, New York, p.99-107.
Metzger, P., Largeau, C., 1999, Chemicals of Botryococcus braunii. In Chemicals from Microalgae (ed. Z. Cohen), Taylor & Francis, p. 205-260.
Mo H. J., Huang W. L. and Machnikowska H., 2007, Generation and expulsion of petroleum from coal macerals visualized insitu during DAC pyrolysis. International Journal of Coal Geology, 73, 167-184.
Moldowan, J. M., Seifert, W. K., 1980, First discovery of botryococcane in petroleum: J. C. S., Chem. Comm. 912-914.
Moldowan, J. M., Seifert, W. K., Gallegos, E. J., 1985, Relationship between petroleum composition and depositional environment of petroleum source rocks: American Association of Petroleum Geologists bulletin, 69, 1255-1268.
Moldowan, J. M., Fago, F. J., Lee, C. Y., 1990, Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae Science, 247, 309-12.
Moldowan, J. M., Lee, C. Y., Sundararaman, P., Salvatori, R., Alajbeg, A., Gjukic, B., Demaison, G. J., Slougui, N. E., Watt, D. S., 1992, Source correlation and maturity assessment of select oils and rocks from the Central Adriatic basin (Italy and Yugoslavia), in J. M. Moldowan, P. Albrecht, and R. P. Philp, eds., Biological Markers in Sediments and Petroleum: Englewood Cliffs, New Jersey, Prentice Hall, p. 370-401.
Noble, R. A., Alexander, R., Kagi, R. I., Knox, J., 1985, Tetracyclic deterpenoid hydrocarbons in some Australian coals, sediments and crude oils: Geochimica et Cosmochimica Acta, 49, 2141-2147.
Ourisson, G., Albrecht, P., Rohmer, M., 1982, Predictive microbial biochemistry-from molecular fossils to procaryotic membranes. Trends in Biochemical Sciences, 7, 236–239.
Peters, K. E., Moldowan, J. M., 1991, Effects of source, thermal maturity and biodegradation on the distribution and isomerization of homohopanes in petroleum: Organic Geochemistry, 17, 47-61.
Peters, K.E., Cassa, M.R., 1994. Applied source-rock geochemistry. In: Magoon, L.B., Dow, W.G.(Eds.), The petroleum system-from source to trap. American Association of Petroleum geologists memoir, 60, p.93-120.
Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. In: The Biomarker Guide, seconded. Biomarkers and Isotopes in Petroleum Exploration and Earth History, 2 Cambridge University Press, p. 540-541.
Powell, T.G., McKirdy, D.M., 1973, Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia. Nature, 243, 37–39.
Price, P. L., O'Sullivan, T., Alexander, R., 1987, The nature and occurrences of oil in Seram, Indonesia. In: Proceedings of the Indonesian Petroleum Association. Sixteenth Annual Convention, 1, Indonesian Petroleum Association, Jakarta, Indonesia, p. 141-73.
Radke, M., Willsch, H., Leythaeuser, D., 1982a, Aromatic components of coal: relation of distribution pattern to rank. Geochim. Cosmochim. Acta, 46, 1831–1848.
Radke, M., Welte, D. H., Willsch, H., 1982b, Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter. Geochim. Cosmochim. Acta, 46, 1–10.
Radke, M., Leythaeuser, D., Teichmuller, M., 1984, Relationship between rank and composition of aromatic hydrocarbons for coals of different origins. Organic Geochemistry, 6, 423–430.
Radke, M., Welte, D.H., Willsch, H., 1986. Maturity parameters based on aromatic hydrocarbons: infuence of the organic matter type. Organic Geochemistry, 10, 51-63.
Radke, M., Willsch, H., Ramanampisoa, L., 1988, Isolation of aromatic compounds from a coal extract by semipreparative HPLC. Chromatographia, 26, 259-266.
Radke, M., Rulkotter, J., Vriend, S. P., 1994, Distribution of naphthalenes in crude oils from the Java Sea: Source and maturation effects. Geochim. Cosmochim. Acta, 58, 3675–3689.
Rahman, M. and Kinghorn, R. R. F., 1995. Apractical classification of kerogens related to hydrocarbon generation. Journal of Petroleum Geology, 18, 1, 91-102.
Rullkotter, J., Marzi, R., 1988, Natural and artificial maturation of biological markers in a Toarcian shale from northern Germany: Organic Geochemistry, 13, 639-45.
Seifert, W. K., Moldowan, J. M., 1981, The effect of thermal stress on source-rock quality as measured by hopane stereo-chemistry: Physics and Chemistry of the Earth, 12, 229-37.
Simoneit, B. R. T., 1978, The organic chemistry of marine sediments. In: REILY J P, CHESTER R, eds. Chemical Oceanography, 7, London: Academic Press, 8, 233-311.
Stach, E., Mackowsky, M.-Th., Teichmuller, M., Taylor, G. H., Chandra, D. and Teichmuller, R., 1982, Stach’s Textbook of coal petrology (3rd ed.), Berlin Stuttgar, Gebruder Borntraeger, 535p.
Stopes, M. C., 1935, On the petrology of banded bituminous coals. Fuel, 40, 14, 4-13.
Sun, Y. Z., Puttmann, W., Speczik, S., 1995, Differences in the depositional environment of Basal Zechstein in Southwest Poland: implications for base metal mineralization. Organic Geochemistry, 23, 819-835.
Sweeney, J.J., Burnham, A.K., 1990, Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists bulletin, 74, 1559-1570.
ten Haven, H. L., de Leeuw, J. W., Peakman, T. M.,Maxwell, J. R., 1986, Anomalies in steroid and hopanoid maturity indices: Geochimica et Cosmochimica Acta, 50, 853-5.
Teichmuller, M., 1989, The genesis of coal from the view point of Coal Petrology. In: P. C. Lyons and B. Alperns (Eds), Peat and Coal : Facies and Depositional Models. International Journal of Coal Geology, 12, p. 1-87.
Ting, F. T. C., 1978, Petrographic techniques in coal analysis. In: Karr, C., Jr. (ed.):Analytical Methods for Coal and Coal Products. Academic Press, Inc., New York, p. 3-26.
Tissot, B. P., Welte, D. H., 1984, Petroleum formation and occurrence;a New approach to oil gas exploration, Springer-Verlag, Berlin, Heidelberg, NewYork, p.699.
van Aarssen, B.G.K., Bastow, T.P., Alexander, R., Kagi, R.I.,1999. Distributions of methylated naphthalenes in crude oils:indicators of maturity, biodegradation and mixing. Organic Geochemistry, 30, 1213-1227.
van Krevelen, D. W., 1961, Coal. Elsevier scientific publishing Co., Amsterdam-London-New York-Princeton, p.514.
Wang, T.G., Simoneit, B.R.T., Philp, R.P., Yu, C.P., 1990. Extended 8β(H)-drimane
and 8, 14-secohopane series in a Chinese boghead coal. Energy and Fuels, 4, 177-183.
Whitehead, E. V., 1982, Molecular evidence for the biogenesis of petroleum and natural gas. In Proceedings of Symposium on Hydrogeochemistry and Biogeochemistry (E. Ingerson, ed.) Vol. Ⅱ, Ther Clarke Co., p.158-211.
Zumberge, J. E., 1987, Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach: Geochimica et Cosmochimica Acta, 51, 1625-1637.
沈俊卿、陳德權,1986,鏡煤素觀測前處理之工作簡化:探採研究所第一屆提高生產力成果發表會成果報告。
孫立中,2000,抑制鏡煤素反射率之量測成因—以分離台灣裕峰煤樣為例,國立中央大學地球物理研究所博士論文,共81 頁。
許信豐,2000,台灣近代湖泊沈積物所含生物指標的分佈與其意義,國立中山大學化學系研究所碩士論文,共117頁。
黃武良,1999,石油-大自然孕育千萬年的珍藏,地球科學園地,第12期,第1~3頁。
黃武良,2004,黑金傳奇石油的來龍去脈,科學發展,第382期,第6-11頁。
鄭國東、羅斌杰、程克明、段毅,1996,源岩鏡質體反射率和有機質演化的熱模擬研究,沉積學報,第14 期,第122-130頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45094-
dc.description.abstract螢光光譜能透露著有機物官能基的變異,同時又能指示成熟度的意涵,此外,對於油具有絕佳的辨別力,因此,螢光光譜為油屬性分析一有效工具。本研究除了針對傳統螢光屬性的探討,了解不同有機質在室溫和高溫下油母質及煤之螢光隨時間的變化(temporal fluorescence alteration; TFA),以試圖了解溫度所扮演的角色,並進一步以透光性良好的鑽石砧實驗,利用連續觀察的方式,模擬包裹體在地層中所封存石油的特性,也因為觀測對象為直接由源岩產生的”活”油,更能直接突顯不同成熟度下油性質的異同,最後結合圍壓熱裂解實驗,氣相層析質譜儀進行成分分析,如此一來則能對比出生油反應過程中,油氣成分的變異,以及過去常用的生物指標之適用性。
經本研究可得以下之初步結果:(1)本研究直接印證螢光波長的變化主要受控於成熟度,實驗結果與前人研究中,以油包裹體之螢光推測螢光隨成熟度增加而往短波長偏移的現象相符合。本實驗進一步發現儘管油的來源不同,無論升溫速率為何、無論何種沈積環境之油母質,當螢光強度開始大幅躍升,其相對應之最大螢光強度波長(λmax)則開始往短波長方向偏移(blue-shift),這樣的結果足以說明為何多數高成熟度的油包裹體以具偏藍螢光居多。本研究成果對瞭解油包裹體的螢光顏色所代表之意涵,提供直接之實驗證據。(2)螢光屬性在空氣中及在氬氣中呈現不同的變化,是由於光氧化作用和溫度的抑制效應。針對油母質尚未產生油之溫度對螢光的抑制效應(thermal quenching)的實驗中顯示,螢光強度呈現隨升溫而遞減,油母質的螢光遞減梯度,與前人量測原油之結果類似。在室溫下油母質的初始螢光強度(Finitial)與其氫指數(HI)、最大產油量之螢光強度(Fmax)成正相關,因此,可以利用量測油母質的初始螢光強度預測其產油潛能。膜煤素(Liptinites)之初始螢光和最大產油量之螢光強度均較鏡煤素(Vitrinite)和惰煤素(Fusinite)高,顯示煤中之膜煤素為主要產油成分。鏡煤素在1.2%Ro時,螢光強度達到最大值,隨後則逐漸遞減,因此,可藉由不同螢光特徵鑑別不同的煤素質。(3)就氣相層析質譜儀的分析結果中顯示,樞紐成分的碳數位置及烷烴的分布情形、以及奇偶數碳優勢比值隨著成熟度提升而趨近於1的程度能指示著有機物來源的異同訊息。芳香族類之分析結果中,皆可發現各成熟度指標受有機物來源環境的影響甚鉅,以硫芴化合物之成熟度參數MDR而言,對於即使同為海相源岩Bar及W其比值卻呈現隨著成熟度完全迥異的兩種趨勢。在菲系化合物之成熟度參數中,則會由於有機物來源不同而導致含有的菲系化合物含量上的差異,使得各計算參數結果有所不同,因此使用甲菲作為成熟度指標時,應特別留意有機物的沈積相。萘系化合物之成熟度參數中則以TNR-2、TMNr之計算結果隨成熟度而有較明顯的變化,MNR、DNR-1、TNR-1的計算結果中,湖相源岩GR在成熟度高於1.1%Ro之後比值才開始有顯著的升高,亦即為高成熟度的指標參數。在生物指標的圖譜分析中發現Pristane(Pr)/n-C17、Phytane(Ph)/n-C18比值均隨著成熟度升高呈遞減趨勢,遞減的程度取決於有機物來源的沈積環境,對同一來源的有機物樣品而言,其log(Pr/n-C17)和log(Ph/n-C18)隨著成熟度呈現平行於有機物類型的界線,兩比值隨成熟度具有同幅度的增減變化,亦即此兩比值能有效地判讀有機物來源而不受成熟度的影響。各樣品之Ts/Ts+Tm和Tetracyclic terpanes/αβ C30 hopane比值均可區分為隨成熟度升高而上升和下降兩種趨勢,比值中的化合物隨著成熟度升高的增減轉換情形與有機物的成分有關。在雙環類半三萜烷(bicyclic sesquiterpane)的成熟度指標中,Drimane、Homodrimane和Eudesmane含量多寡主要受控於有機物來源的沈積環境,從各比值的遞增或遞減趨勢,則能反映有機物在生油過程中反應趨向於生成該化合物或是裂解反應。
zh_TW
dc.description.abstractThe fluorescence spectroscopy has been widely used to estimate compositions, sources, and maturities of “live” oils during the time of entrapment. In the present study, we investigate the bulk fluorescence response of kerogens and macerals from various depositional environments that the objective was to characterize their average fluorescence properties before and during oil generation, with special emphasis on the fluorescence intensity variation as a function of organic species, time, and temperature. The experiments were conducted using the Diamond Anvil Cell (DAC) pyrolysis technique, which enables the measurement of the fluorescence spectra of newly generated “live” oils during maturation experiments. This study aimed to directly address the maturity dependence of fluorescence color variation observed in natural hydrocarbon inclusions, and the effect of source types on the evolutional trend. The fluorescence spectra of oils generated from all studied kerogens exhibit progressive blue-shift of peak wavelengths (λmax) and red/green quotients (I650/I500) upon increasing maturity, suggesting that the fluorescent colors of crude and inclusion oils are both maturity- and source-dependent, and therefore cannot be used as universal maturity indicators.
The initial fluorescence intensities for bulk kerogens (Finitial) under ambient conditions are correlated with their hydrogen index (HI). The Finitial of these kerogens can be correlated with the maximum fluorescence (Fmax) of their generative oils, and may provide some insight into their oil generation potential. Liptinite separated from humic coals exhibits both higher Finitial and Fmax, consistent with their higher oil-generation potential than vitrinite and fusinite (inertinite). Fmax of separated vitrinites show a positive correlation with their maturities below 1.2 %Ro and a negative correlation at higher maturity, implying the decline of their oil generation potentials at high maturity. The present study has demonstrated that the fluorescence of bulk kerogens at elevated temperatures before or during organic transformation can be used to characterize organic matter.
In addition, oils generated from isolated kerogens under confined pyrolysis were characterized by GC-MS for the distributions of aliphatic and aromatic hydrocarbons and biomarkers for studying source dependability of some conventional organic maturity parameters. Normal alkane distribution in oils from different kerogens exhibit distinct preference in carbon number and predominance in specific compounds. The carbon preference index (CPI) and odd-even predominance (OEP) ratios tend to approach to 1 with increasing maturity. The methylphenanthrene ratios (MPR) are suitable for high maturity indication. The methylphenanthrene index (MPI1 and MPI3) from GR kerogen and two marine kerogens show better correlation than terrestrial kerogens. Source dependence of these methylphenanthrene maturity parameters was observed. The MDR ratios (i.e. 4-MDBT/1-MDBT) for two marine kerogens follow oppose trends, suggesting high source-dependence. Two trimethylnaphthalene parameters, TNR-2 and TMNr, exhibit good correlation with maturity for most kerogens, but the MNR, DNR-1, and TNR-1 ratios for GR kerogen are suitable only for indicating maturity higher than 1.0 %Ro. Pr/n-C17 and Ph/n-C18 ratios decrease with increasing maturity but show distinct trends for different kerogens. The pristane/phytane (Pr/Ph) and [(Pr/C17)/(Ph/C18)] ratios in oils from three major kerogen types vary barely with maturity but are discernible in diverse organic types, implying good source indication. The contents of bicyclic sequiterpanes in oils vary with their sources but their relative concentration changes significantly with maturity as a result of neo-formation and/or secondary cracking; the drimane/homodrimane ratio in Green-River oil increases progressively with maturity whereas the eudesmane/drimane ratio in the terrestrial oils decreases with maturity.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:04:14Z (GMT). No. of bitstreams: 1
ntu-99-D95224005-1.pdf: 5311996 bytes, checksum: b37be5a8094badc4b2941fe243ddffe8 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要 II
Abstract IV
誌謝 VI
目 錄 IX
圖 目 錄 XII
表 目 錄 XVII
PART Ⅰ Simulation of the fluorescence evolution of 'live' oils from kerogens in a diamond anvil cell: application to inclusion oils in terms of maturity and source 2
摘要 3
Abstract 4
1. Introduction 5
2. Experimental Procedures 9
2.1. Starting Materials 9
2.2. Diamond Anvil Cell Experiments 11
2.3. Fluorescence Spectroscopy 12
3. Results and discussions 14
3.1 General Remarks 14
3.2 Evolution of λmax and the I650/I500 Quotient with Maturity 16
3.3. Implications for Oil Inclusions 28
4. Conclusions 31
Acknowledgements 32
References 33
PART Ⅱ Characterization of kerogens and coals using fluorescence measured in situ at elevated temperatures. 45
摘要 46
Abstract 47
1.Introduction 48
2. Experimental methods 49
2.1. Samples 49
2.2. Pyrolysis experiments 51
2.3. Ambient and low temperature experiments 52
2.4. Fluorescence spectroscopy 53
3. Results and discussions 54
3.1 General remarks 54
3.2 Bulk fluorescence yield and its temporal fluorescence alteration (TFA) at ambient temperature. 55
3.3. Temperature effect of bulk fluorescence yield and temporal alteration before organic transformation. 58
3.4. The temperature dependence of fluorescence intensity 61
3.5.Fluorescence response of organic matter during kerogen transformation 64
4. Conclusions 73
Acknowledgments 74
References 74
Part Ⅲ 以圍壓熱裂解實驗探討有機物之沈積環境對成熟度指標的影響 Source dependence of organic maturity parameters evaluated by artificial maturation using confined pyrolysis 81
摘要 82
Abstract 84
第一章 緒論 86
第二章 研究背景 89
第一節 石油與天然氣 89
第二節 油母質 91
第三節 熱成熟作用 96
第四節 熱成熟參數 98
第五節 生物指標 (Biomarker) 99
第六節 芳香族生物指標 105
第三章 實驗儀器 109
第一節 高壓釜 109
第二節 氣相層析質譜儀 (GS/MS) 109
第三節 飛行時間質譜儀Time-of-flight (TOF)Spectrometer 116
第四章 實驗方法 117
第一節 實驗樣品 118
第二節 實驗流程 119
第五章、實驗結果 122
第一節 不同沈積環境之總離子圖譜分析結果 122
第二節 直鍊與支鍊烷類之分析結果 132
第三節 芳香族類之分析結果 134
第四節 生物指標之分析結果 148
第六章、結論 155
誌謝 158
參考文獻 158
附錄 一 支鍊與直鍊烷烴之成熟度指標計算結果 165
附錄 二 相關之奇偶數碳優勢比值計算結果 166
附錄 三 菲系化合物之成熟度指標計算結果 167
附錄 四 萘系化合物之成熟度指標計算結果 168
附錄 五 四環類萜烷、五環類三萜烷指標化合物之成熟度指標計算結果 169
附錄 六 雙環類半三萜烷(bicyclic sesquiterpane)之成熟度指標計算結果 171
dc.language.isozh-TW
dc.title生油岩之沈積環境及成熟度對生油之螢光屬性、多環芳香烴和生物指標的影響之實驗研究zh_TW
dc.titleSource dependence of fluorescence characteristics and aromatic, biomarker maturity parameters evaluated by artificial maturation.en
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee郭政隆,吳素慧,林立虹,楊耿明
dc.subject.keyword螢光,多環芳香烴,生物指標,生油岩,zh_TW
dc.subject.keywordfluorescence,aromatic,biomarker,source rock,en
dc.relation.page171
dc.rights.note有償授權
dc.date.accepted2010-02-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
5.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved