請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45087完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡進發 | |
| dc.contributor.author | Yu-Ming Wang | en |
| dc.contributor.author | 王郁銘 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:03:58Z | - |
| dc.date.available | 2010-02-24 | |
| dc.date.copyright | 2010-02-24 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-10 | |
| dc.identifier.citation | [1] http://www.opec.org
[2] http://www.unctad.org [3] 戴堯天,劉衿友,陸磐安,”造船原理”, 國立台灣大學造船工程研究所, 民國六十四年十月, 頁227-381. [4] C.S. Meng, ”Proceeding of the International Symposium on Seawater Drag Reduction,” ONR, Newport, Rhode Island, 1998. [5] B. R. Clayton, et al., ”Turbulent Drag Reduction Using Compliant Surfaces”,Mathematical, Physical and Engineering Sciences, Vol. 453, No. 1965, 1997,pp. 2229-2240. [6] S. Kang, and H. Choi, ”Active Wall Motions for Skin-Friction Drag Reduction”, Physics of Fluids, Vol.12, No.12, 2000. [7] P.K. Ptasinski, F.T.M. Nieuwstadt, B.H.A.A. van den Brule and M.A. Hulsen, ”Experiments in Turbulent Pipe Flow with Polymer Additives at Maximum Drag Reduction”, Flow, Turbulence and Combustion Vol.66,2001, pp159-182. [8] N.K. Madavan, S. Deutsch and C.L. Merkle, ”Reduction of Turbulent Skin Friction by Microbubbles”, Physics of Fluid, Vol.27, No.2, 1984,pp.356-363. [9] R.B. Promode, M.C. John, P.T. Daniel, ”Wall-Layer Scale Electromagnetic Turbulence Control in an Axisymmetric Body”, ASME Heat Transfer/Fluids Engineering Summer Conference, Vol.1, 2004, p.p.979-985. [10] D. M. Bushnell, and K. J. Moore, “Drag reduction in nature”, Annual Review of fluid mechanics, Vol. 23, 1991, pp. 65-79. [11] M.E. McCormick, and R. Bhattacharyya, ”Drag Reduction of a Submersible Hull by Electrolysis,” Naval Engineering Journal, Vol.85, 1973,pp.11-16. [12] V. G. Bogdevich, and A. G. Malyuga, “The distribution of skin friction in a turbulent boundary layer. Investigations of Boundary Layer Control(in Russian).”, Thermophysics Institute , Novosibirsk, 1976. [13] 劉驥佑,”微泡減阻技術之基礎研究”, 國立台灣大學碩士論文, 民國九十二年六月,頁5-28。 [14] S. Deutsch, and J. Castano, “Microbubble Skin Reduction on an Axisymmetric Body,” Physics of Fluids, Vol.29, No. 11, 1986,pp.3590-3597. [15] T. Takahashi, A. Kakugawa, M. Makino, and Y. Kodama, ” Experimental Study on Scale Effect of Drag Reduction by Microbubbles Using Very Large Flat Plate Ship”, J. Kansai Soc. N.A., Japan, No.239, 2003 [16] 謝志明,”微泡減阻技術在船模上的應用研究”, 國立台灣大學碩士論文,民國九十三年一月, 頁6-28. [17] L. Cuccia, ”The Controlled Air Film Hull-New Appproach to the High Efficiency Power CAT”, Boatbuilder Ⅸ, 1991, pp.40-42. [18] Y. Kodama, et al., “A full-scale experiment on microbubbles for skin friction reduction using 'Seiun-Maru', Part 2: The full-scale experiment”, Journal of the Society of Naval Architects of Japan, Vol. 192, 2002, p.p.14-27. [19] H. Kato, et al., “Practical application of microbubbles to ships--- Large scale model experiments and a new full scale experiment ----“, 6th InternationalSymposium on Smart Control of Turbulence, 2005. [20] N. K. Madavan, S. Deutsch, and C. L. Merkle, “Measurements of LocalSkin Friction in a Microbubble Modified Turbulent Boundary Layer”,Journal of Fluid Mechanics, Vol.156, 1985, pp.237-256. [21] N.K. Madavan, C.L. Merkle, and S. Deutsch, “Numerical Investigation intothe Mechanisms of Microbubble Drag Reduction”, Journal of Fluids Eng.Vol. 107, 1985, pp.370-377. [22] D. P. Hwang, “Skin Friction Reduction by Micro-Blowing Technique”,United States Patent, Patent No: 5803410, 1998. [23] 日本石川島播磨重工業股份有限公司,”摩擦減小船的氣泡産生,減小表皮摩擦的方法及具有表皮摩擦減小裝置之船”,中華民國專利公報, 專利編號: 403815, 民國八十九年九月. [24] 華仕德科技股份有限公司,”微泡水生成裝置”, 中華民國專利公報, 專利編號: M305007, 民國九十六年一月. [25] R.W. Fox,”Introduction to fluid mechanics”, Fourth edition . [26] D. C. Carson, “Drag Reduction System and Method”, United States Patent,Patent No: US7004094B2, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45087 | - |
| dc.description.abstract | 節能減碳是目前世界各國的重要課題,在世界80%貿易運輸
依賴海運的情況下,若能減少船舶阻力,提高能源使用效率,對 節能減碳便能有不小貢獻。本研究為在船模上開發具有潛力與潔 淨的微泡減阻技術研究,開發出可應用於船模的微泡減阻技術。 本研究首先使用三種微泡產生方式來進行實驗: (1)針孔微 泡產生方式、(2)滷化技術及(3)透氣材微泡產生方式。針孔微泡 產生方式會產生氣體堆積現象,沒有使用於減阻實驗。將滷化技 術及透氣材於拖曳水槽中進行平板減阻實驗,實驗結果發現透氣 材噴氣時的平板減阻效果明顯優於滷化技術。在拖曳速度3.6m/s 時有最佳減阻效果31.6%。因此本研究選擇了透氣材來應用在船 模上,在船模的底部分別裝設三塊透氣材。實驗的結果顯示三塊 透氣材共同噴氣時有最佳減阻效果7.2%。為了增加微泡覆蓋面 積,增設了球艏噴氣裝置,實驗結果發現球艏噴氣裝置與船底透 氣材共同噴氣有最佳減阻效果9.6%, 證明了增加微泡覆蓋面積 可增加減阻效果。 | zh_TW |
| dc.description.abstract | Energy saving and carbon reduction is one of the most important
research in the world. With more than 80% of international trade in goods being carried by sea, reducing the resistance and raising the efficiency of ship propulsion is a great contribution to Energy saving and carbon reduction. The major target of the research is to develop the most promising and cleaning micro-bubble drag reduction technique in ship model. It is expected to develop a micro-bubble drag reduction technique which can be applied to the full scale ship. There are three micro-bubble generated methods used in this research. It includes pinhole, air/water mixer and porous plates. The pinhole method was not used in the drag reduction test because the air injected by pinhole is accumulated and form large bubble. The air/water mixer and aluminum porous plates were used to reduce the drag of flat-plate in towing tank. The drag reduction rate of aluminum porous plates was better than air/water mixer as shown from the test results. The 31.6% drag reduction was obtained by the micro-bubble generated by Aluminum porous plates when the model velocity is 3.6m/s. Thus the aluminum porous plates have been selected to apply on the ship model to verify the drag reduction effect. There are three aluminum porous plates have been installed on a flat bottom of ship model. The best drag reduction rate of 7.2% was found in this test. For better micro-bubble coverage, the bulb bow injector was set up on the ship model. The 9.6% drag reduction was obtained when both of bulb bow injector and aluminum porous plates operated at the same time. The test results prove that the better micro-bubble coverage bring the better drag reduction rate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:03:58Z (GMT). No. of bitstreams: 1 ntu-99-R96525047-1.pdf: 5471474 bytes, checksum: 16ec6dbd6cde3172c70f8dd6565947f4 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目 錄
中文摘要 ...................................................................................................... Ⅰ 英文摘要…….............................................................................................. Ⅱ 目 錄…….............................................................................................. Ⅲ 附圖目錄 ...................................................................................................... Ⅴ 附表目錄…….............................................................................................. Ⅶ 符號表……….............................................................................................. Ⅷ 第一章 緒 論 ....................................................................................... 1 1.1. 研究動機與背景 ........................................................................... 1 1.2. 文獻探討 ....................................................................................... 2 1.3. 研究內容 ....................................................................................... 5 第二章 實驗設備與儀器 ........................................................................... 6 2.1. 微泡產生設備 ............................................................................... 6 2.2. 阻力實驗共用設備 ....................................................................... 6 2.2.1. 實驗水槽及拖車系統 ............................................................. 6 2.2.2. PC、A/D 卡及訊號放大器 ...................................................... 6 2.2.3. 空壓元件及管線配置 ............................................................. 7 2.3. 平板阻力量測系統 ....................................................................... 7 2.4. 船模阻力量測系統 ....................................................................... 8 2.4.1. R63 阻力量測系統 ................................................................... 8 2.4.2. RD524-1 船模及水槽 ............................................................... 8 第三章 微泡產生方式 ............................................................................. 10 3.1. 微泡產生方式的選擇 ................................................................. 10 3.2. 微泡大小之估算 ......................................................................... 11 3.3. 微泡產生方式之比較 ................................................................. 11 第四章 實驗程序 ..................................................................................... 13 4.1. 阻力計之選用及校正 ................................................................. 13 4.1.1. 阻力計之選用........................................................................ 13 4.1.2. 阻力計校正 ............................................................................ 15 4.2. 船模壓載 ..................................................................................... 15 4.3. 實驗步驟 ..................................................................................... 16 4.3.1. 平板減阻實驗........................................................................ 16 4.3.1.1. 以滷化技術進行實驗 ................................................... 16 4.3.1.2. 以透氣材進行實驗 ....................................................... 17 4.3.2. 船模減阻實驗........................................................................ 17 第五章 實驗結果及討論 ......................................................................... 19 5.1. 參數定義及Cfb 之計算 ............................................................... 19 5.2. 平板減阻實驗結果 ..................................................................... 21 5.2.1. 以滷化技術進行實驗 ........................................................... 21 5.2.2. 以透氣材進行實驗 ............................................................... 21 5.3. 船模減阻實驗結果 ..................................................................... 22 5.4. 實驗討論 ..................................................................................... 23 5.4.1. 平板減阻實驗........................................................................ 23 5.4.2. 船模減阻實驗........................................................................ 24 第六章 結論與建議 ................................................................................. 27 6.1. 結論 ............................................................................................. 27 6.2. 建議 ............................................................................................. 27 參考文獻 ...................................................................................................... 29 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微泡減阻技術 | zh_TW |
| dc.subject | 船模試驗 | zh_TW |
| dc.subject | ship model test | en |
| dc.subject | Micro-Bubble Drag Reduction Technique | en |
| dc.title | 微泡減阻技術實用化之研究 | zh_TW |
| dc.title | Study on the Application of Micro-Bubble Drag Reduction Technique in ship Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭真祥,曾國正 | |
| dc.subject.keyword | 微泡減阻技術,船模試驗, | zh_TW |
| dc.subject.keyword | Micro-Bubble Drag Reduction Technique,ship model test, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-02-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
