Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45087
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡進發
dc.contributor.authorYu-Ming Wangen
dc.contributor.author王郁銘zh_TW
dc.date.accessioned2021-06-15T04:03:58Z-
dc.date.available2010-02-24
dc.date.copyright2010-02-24
dc.date.issued2010
dc.date.submitted2010-02-10
dc.identifier.citation[1] http://www.opec.org
[2] http://www.unctad.org
[3] 戴堯天,劉衿友,陸磐安,”造船原理”, 國立台灣大學造船工程研究所, 民國六十四年十月, 頁227-381.
[4] C.S. Meng, ”Proceeding of the International Symposium on Seawater Drag Reduction,” ONR, Newport, Rhode Island, 1998.
[5] B. R. Clayton, et al., ”Turbulent Drag Reduction Using Compliant Surfaces”,Mathematical, Physical and Engineering Sciences, Vol. 453, No. 1965, 1997,pp. 2229-2240.
[6] S. Kang, and H. Choi, ”Active Wall Motions for Skin-Friction Drag Reduction”, Physics of Fluids, Vol.12, No.12, 2000.
[7] P.K. Ptasinski, F.T.M. Nieuwstadt, B.H.A.A. van den Brule and M.A. Hulsen, ”Experiments in Turbulent Pipe Flow with Polymer Additives at Maximum Drag Reduction”, Flow, Turbulence and Combustion Vol.66,2001, pp159-182.
[8] N.K. Madavan, S. Deutsch and C.L. Merkle, ”Reduction of Turbulent Skin Friction by Microbubbles”, Physics of Fluid, Vol.27, No.2, 1984,pp.356-363.
[9] R.B. Promode, M.C. John, P.T. Daniel, ”Wall-Layer Scale Electromagnetic Turbulence Control in an Axisymmetric Body”, ASME Heat Transfer/Fluids Engineering Summer Conference, Vol.1, 2004, p.p.979-985.
[10] D. M. Bushnell, and K. J. Moore, “Drag reduction in nature”, Annual Review of fluid mechanics, Vol. 23, 1991, pp. 65-79.
[11] M.E. McCormick, and R. Bhattacharyya, ”Drag Reduction of a Submersible Hull by Electrolysis,” Naval Engineering Journal, Vol.85, 1973,pp.11-16.
[12] V. G. Bogdevich, and A. G. Malyuga, “The distribution of skin friction in a turbulent boundary layer. Investigations of Boundary Layer Control(in Russian).”, Thermophysics Institute , Novosibirsk, 1976.
[13] 劉驥佑,”微泡減阻技術之基礎研究”, 國立台灣大學碩士論文, 民國九十二年六月,頁5-28。
[14] S. Deutsch, and J. Castano, “Microbubble Skin Reduction on an Axisymmetric Body,” Physics of Fluids, Vol.29, No. 11, 1986,pp.3590-3597.
[15] T. Takahashi, A. Kakugawa, M. Makino, and Y. Kodama, ” Experimental Study on Scale Effect of Drag Reduction by Microbubbles Using Very Large Flat Plate Ship”, J. Kansai Soc. N.A., Japan, No.239, 2003
[16] 謝志明,”微泡減阻技術在船模上的應用研究”, 國立台灣大學碩士論文,民國九十三年一月, 頁6-28.
[17] L. Cuccia, ”The Controlled Air Film Hull-New Appproach to the High Efficiency Power CAT”, Boatbuilder Ⅸ, 1991, pp.40-42.
[18] Y. Kodama, et al., “A full-scale experiment on microbubbles for skin friction reduction using 'Seiun-Maru', Part 2: The full-scale experiment”, Journal of the Society of Naval Architects of Japan, Vol. 192, 2002, p.p.14-27.
[19] H. Kato, et al., “Practical application of microbubbles to ships--- Large scale model experiments and a new full scale experiment ----“, 6th InternationalSymposium on Smart Control of Turbulence, 2005.
[20] N. K. Madavan, S. Deutsch, and C. L. Merkle, “Measurements of LocalSkin Friction in a Microbubble Modified Turbulent Boundary Layer”,Journal of Fluid Mechanics, Vol.156, 1985, pp.237-256.
[21] N.K. Madavan, C.L. Merkle, and S. Deutsch, “Numerical Investigation intothe Mechanisms of Microbubble Drag Reduction”, Journal of Fluids Eng.Vol. 107, 1985, pp.370-377.
[22] D. P. Hwang, “Skin Friction Reduction by Micro-Blowing Technique”,United States Patent, Patent No: 5803410, 1998.
[23] 日本石川島播磨重工業股份有限公司,”摩擦減小船的氣泡産生,減小表皮摩擦的方法及具有表皮摩擦減小裝置之船”,中華民國專利公報, 專利編號: 403815, 民國八十九年九月.
[24] 華仕德科技股份有限公司,”微泡水生成裝置”, 中華民國專利公報, 專利編號: M305007, 民國九十六年一月.
[25] R.W. Fox,”Introduction to fluid mechanics”, Fourth edition .
[26] D. C. Carson, “Drag Reduction System and Method”, United States Patent,Patent No: US7004094B2, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45087-
dc.description.abstract節能減碳是目前世界各國的重要課題,在世界80%貿易運輸
依賴海運的情況下,若能減少船舶阻力,提高能源使用效率,對
節能減碳便能有不小貢獻。本研究為在船模上開發具有潛力與潔
淨的微泡減阻技術研究,開發出可應用於船模的微泡減阻技術。
本研究首先使用三種微泡產生方式來進行實驗: (1)針孔微
泡產生方式、(2)滷化技術及(3)透氣材微泡產生方式。針孔微泡
產生方式會產生氣體堆積現象,沒有使用於減阻實驗。將滷化技
術及透氣材於拖曳水槽中進行平板減阻實驗,實驗結果發現透氣
材噴氣時的平板減阻效果明顯優於滷化技術。在拖曳速度3.6m/s
時有最佳減阻效果31.6%。因此本研究選擇了透氣材來應用在船
模上,在船模的底部分別裝設三塊透氣材。實驗的結果顯示三塊
透氣材共同噴氣時有最佳減阻效果7.2%。為了增加微泡覆蓋面
積,增設了球艏噴氣裝置,實驗結果發現球艏噴氣裝置與船底透
氣材共同噴氣有最佳減阻效果9.6%, 證明了增加微泡覆蓋面積
可增加減阻效果。
zh_TW
dc.description.abstractEnergy saving and carbon reduction is one of the most important
research in the world. With more than 80% of international trade in
goods being carried by sea, reducing the resistance and raising the
efficiency of ship propulsion is a great contribution to Energy
saving and carbon reduction. The major target of the research is to
develop the most promising and cleaning micro-bubble drag reduction
technique in ship model. It is expected to develop a micro-bubble drag
reduction technique which can be applied to the full scale ship.
There are three micro-bubble generated methods used in this
research. It includes pinhole, air/water mixer and porous plates.
The pinhole method was not used in the drag reduction test because
the air injected by pinhole is accumulated and form large bubble.
The air/water mixer and aluminum porous plates were used to
reduce the drag of flat-plate in towing tank. The drag reduction rate
of aluminum porous plates was better than air/water mixer as
shown from the test results. The 31.6% drag reduction was obtained
by the micro-bubble generated by Aluminum porous plates when
the model velocity is 3.6m/s.
Thus the aluminum porous plates have been selected to apply
on the ship model to verify the drag reduction effect. There are
three aluminum porous plates have been installed on a flat bottom
of ship model. The best drag reduction rate of 7.2% was found in
this test. For better micro-bubble coverage, the bulb bow injector
was set up on the ship model. The 9.6% drag reduction was
obtained when both of bulb bow injector and aluminum porous
plates operated at the same time. The test results prove that the
better micro-bubble coverage bring the better drag reduction rate.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:03:58Z (GMT). No. of bitstreams: 1
ntu-99-R96525047-1.pdf: 5471474 bytes, checksum: 16ec6dbd6cde3172c70f8dd6565947f4 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目 錄
中文摘要 ...................................................................................................... Ⅰ
英文摘要…….............................................................................................. Ⅱ
目 錄…….............................................................................................. Ⅲ
附圖目錄 ...................................................................................................... Ⅴ
附表目錄…….............................................................................................. Ⅶ
符號表……….............................................................................................. Ⅷ
第一章 緒 論 ....................................................................................... 1
1.1. 研究動機與背景 ........................................................................... 1
1.2. 文獻探討 ....................................................................................... 2
1.3. 研究內容 ....................................................................................... 5
第二章 實驗設備與儀器 ........................................................................... 6
2.1. 微泡產生設備 ............................................................................... 6
2.2. 阻力實驗共用設備 ....................................................................... 6
2.2.1. 實驗水槽及拖車系統 ............................................................. 6
2.2.2. PC、A/D 卡及訊號放大器 ...................................................... 6
2.2.3. 空壓元件及管線配置 ............................................................. 7
2.3. 平板阻力量測系統 ....................................................................... 7
2.4. 船模阻力量測系統 ....................................................................... 8
2.4.1. R63 阻力量測系統 ................................................................... 8
2.4.2. RD524-1 船模及水槽 ............................................................... 8
第三章 微泡產生方式 ............................................................................. 10
3.1. 微泡產生方式的選擇 ................................................................. 10
3.2. 微泡大小之估算 ......................................................................... 11
3.3. 微泡產生方式之比較 ................................................................. 11
第四章 實驗程序 ..................................................................................... 13
4.1. 阻力計之選用及校正 ................................................................. 13
4.1.1. 阻力計之選用........................................................................ 13
4.1.2. 阻力計校正 ............................................................................ 15
4.2. 船模壓載 ..................................................................................... 15
4.3. 實驗步驟 ..................................................................................... 16
4.3.1. 平板減阻實驗........................................................................ 16
4.3.1.1. 以滷化技術進行實驗 ................................................... 16
4.3.1.2. 以透氣材進行實驗 ....................................................... 17
4.3.2. 船模減阻實驗........................................................................ 17
第五章 實驗結果及討論 ......................................................................... 19
5.1. 參數定義及Cfb 之計算 ............................................................... 19
5.2. 平板減阻實驗結果 ..................................................................... 21
5.2.1. 以滷化技術進行實驗 ........................................................... 21
5.2.2. 以透氣材進行實驗 ............................................................... 21
5.3. 船模減阻實驗結果 ..................................................................... 22
5.4. 實驗討論 ..................................................................................... 23
5.4.1. 平板減阻實驗........................................................................ 23
5.4.2. 船模減阻實驗........................................................................ 24
第六章 結論與建議 ................................................................................. 27
6.1. 結論 ............................................................................................. 27
6.2. 建議 ............................................................................................. 27
參考文獻 ...................................................................................................... 29
dc.language.isozh-TW
dc.subject微泡減阻技術zh_TW
dc.subject船模試驗zh_TW
dc.subjectship model testen
dc.subjectMicro-Bubble Drag Reduction Techniqueen
dc.title微泡減阻技術實用化之研究zh_TW
dc.titleStudy on the Application of Micro-Bubble Drag Reduction Technique in ship Modelen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee郭真祥,曾國正
dc.subject.keyword微泡減阻技術,船模試驗,zh_TW
dc.subject.keywordMicro-Bubble Drag Reduction Technique,ship model test,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2010-02-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
5.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved