請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45082完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周仲島(Ben Jong-Dao JOU) | |
| dc.contributor.author | De-En LIN | en |
| dc.contributor.author | 林得恩 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:03:46Z | - |
| dc.date.available | 2010-02-24 | |
| dc.date.copyright | 2010-02-24 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-11 | |
| dc.identifier.citation | Arakawa and V. R. Lamb, 1977: Computational design of the basic dynamical process of the UCLA general circulation model. Methods in Computational Physics , 17 ,173-265.
Arking, A., and D. Ziskin, 1994: Relationship between clouds and sea surface temperature in the western tropical pacific. J. Climate, 7, 988–1000. Back, L. E. and C. S. Bretherton, 2009: On the Relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans, J. Climate, 22, 4182-4196. Benjamin, S. G., and T. N. Carlson, 1986: Some effects of surface heating and topography on the regional severe storm environment.Part I: Three-dimensional simulations. Mon.Wea. Rev.,114,307-329. Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677-691. Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693-709. Blackadar, A. K., 1979: High resolution models of the planetary boundary layer.Advances in Environmental Sciences and Engineering .Vol. 1,Pfafflin and Ziegler , Eds,Gordon and Breach, 50-85. Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Volume 2. Oxford university Press. 594pp. Brommer, D. M., R. C. Balling, and R. S. Cerveny, 2003: Local and regional discriminators of mesoscale convective vortex development in Arizona. Mon, Wea, Rev., 131, 1939-1943. Brooks, H. E., and D. J. Stensrud , 2000:Climatology of heavy rain events in the United States from hourly precipitation observations. Mon.Wea. Rev.,128,1194-1201. Chen,C. S., Y.-L. Liu, P.-L. Lin, and W. C. Wang, 2007: Statistics of heavy rainfall occurrences in Taiwan. Weather and Forecasting, 22, 981-1002. Chen, C., W.-K. Tao., P.-L. Lin., G. S. Lai.,S.-F. Tseng and T.-C. Chen Wang, 1998: The intensification of the low-level jet during the development of mesoscale convective systems on a Mei-Yu front. Mon. Wea. Rev., 126, 349-371. Chen,C.-S., and Y.-L.Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323-1341. Chen, G. T.-J., 1977: An analysis of moisture structure and rainfall for a Mei-Yu regime in Taiwan. Proc, Natl, Sci, Counc., 1, 11, 1-21. Chen, G. T.-J., and C.-H.Wang,and S.C.-S.Liu, 2003: Potential vorticity diagnois of a Mei-Yu front case. Mon. Wea. Rev., 131, 2680-2696. Chen, G. T.-J., and C.-Y. Tsay, 1978: A synoptic case study of Mei-Yu near Taiwan. Papers Meteor. Res., 1, 25–36. Chen, G. T.-J., 1979: On the moisture budget of a Mei-Yu system in southeastern Asia. Proc. Natl. Sci. Counc., 3, 1, 24–32. Chen, G. T.-J., and S.-S. Chi, 1980: On the frequency and speed of Mei-Yu front over southern China and the adjacent areas. Papers Meteor. Res., 3, 1&2, 31–42. Chen, G. T.-J., and C. P. Chang, 1980: The structure and vorticity budget of an early summer monsoon trough (Mei-Yu) over southeastern China and Japan, Mon. Wea. Rev., 108, 942– 953. Chen, G. T.-J., 1983: Observational aspects of Mei-Yu phenomena in subtropical China. J. Meteor. Soc. Japan , 61, 306-312. Chen, G. T.-J., 1992: Mesoscale features observed in the Taiwan Mei -Yu season. J. Metero. Soc.Japan.,70, 497-515. Chen, G. T.-J., 1994: Large-scale circulations associated with the east Asian summer monsoon and the Mei-Yu over south China and Taiwan. J.Meteor.Soc.Japan, 72, 959-983. Chen, G. T.-J., and C. C. Yu., 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in Mei-Yu Season, Mon,Wea,Rev.,116, 884-891. Chen, G. T.-J., 2004: Research on the phenomena of Mei-Yu during the past quarter century. World Scientific Series for Meteorology of East Asia.vol.2,East Asian Monsoon,C.P.Chang,Ed., World Scientific Publishing Co.,357-403. Chen, G. T.-J., C.-C. Wang and D. T. W. Lin, 2005: Characteristics of low-level jets over northern Taiwan in Mei-Yu season and their relationship to heavy rain events. Mon. Wea. Rew., 133 ,20-43. Chen, G. T.-J., C.-C. Wang and L. F. Lin, 2006: A diagnostic study of a retreating Mei-Yu front and the accompanying low-level jet formation and intensification. Mon. Wea. Rew., 134 ,874-896. Chen, G. T.-J., and H. C. Chou, 2006: A summertime severe weather event occurred in the Taipei Basin. TAO, 17, 3-22. Chen, G. T.-J., C.-C. Wang and A. H. Wang, 2007: A case study of subtropical frontogenesis during a blocking event. Mon. Wea. Rew., 135 ,2588-2609. Chen, G. T.-J., C.-C. Wang and S.-W. Chang, 2008: A diagnostic case study of Mei-Yu frontogenesis and development of wavelike frontal disturbances in the subtropical environment. Mon. Wea. Rew., 136 ,41-61. Chen, Q., 1982: The instability of the gravity-inertia wave and its relation to low-level jet and heavy rainfall. J. Meteor .Soc. Japan, 60,1041 -1057. Chen, S.-H., and J. Dudhia, 2000: Annual report: WRF physics, Air Force Weather Agency,38. Chen, S. J. ,Y. H. Kuo,W. Wang ,Z. Y. Tao, and B. Cui, 1998: A modeling case study of heavy rainstorms along the Mei-Yu front. Mon. Wea. Rew.,126, 2330-2351. Chen, Y. L., and J. Li., 1995: Large- scale conditions favorable for the development of heavy rainfall during TAMEX IOP3. Mon. Wea. Rev., 123,2978-3002. Chen, Y. L., and S. F. Tseng, 2000: Comments on ‘‘The Intensification of the Low-Level Jet during the Development ofMesoscale Convective Systems on a Mei-Yu Front’’. Mon. Wea. Rev., 128,495-506. Chou, L, C., 1986: An numerical simulation of the Mei-Yu front and the associated low-level Jet. Ph.D. Thesis, Naval Postgraduate School, Nonterey,Ca.,160pp Chou M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 3, 85. Cotton, W. R., and Anthes R. A., 1989: Storm and cloud dynamics. Academic Press. Ding,Y. –H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70,337-396. Ding ,Y,-H., and Liu Y. J., 2001: Onset and the evolution of the summer monsoon over the South China Sea during the SCSMEX field experiment in 1998. J.Meteor.Soc.Japan,79,255-276. Dudia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107. Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715-721. Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp. Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over the tropical oceans. Science, 238, 657–659. Grell, G., 1993: Prognostic evalution of assumptions used by cumulus parameterization. Mon. Wea. Rew.,121,764-787. Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322-2339. Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model, Mon. Wea. Rev., 126, 2621-2639. Hong, J.-S., 2003: Evaluation of the high-resolution model forecasts over the Taiwan Area during GIMEX. Wea. Forecasting,18, 836-846. Janjic, Z. I., 1990: The step-mountain coordinate: physical package. Mon. Wea. Rev., 118,1429-1443. Janjic, Z. I., 2000: Comments on 'Development and evaluation of a convection scheme for use in climate models.' J. Atmos. Sci., 57, 3686. Janjic, Z. I., 2002: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note No. 437, 61. Jankov, I., and W. A. Gallus Jr., 2005: The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Weather and Forecasting ,20,1048-1060. Johnson, R. H., and J. F. Bresch, 1991: Diagnosed characteristics of precipitation system over Taiwan during the May-June 1987 TAMEX. Mon.Wea.Rev.,119, 2540-2557. Jou , B. J.-D., and S. -M. Deng, 1992: Structure of a low-level jet and its role in triggering and organizing moist convection over Taiwan:A TAMEX case study. TAO,3,39-58. Kain, J. S., and J. M. Fritsch, 1992: The role of the convective” trigger function ”in numerical forecasts of mesoscale convective system. Meteor Atmos.Phys.,49,93-106. Kain, J. S., and J. M.Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models, K.A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc.,246 . Kim, H. W., and D. K. Lee, 2006: An observational study of mesoscale convective systems with heavy rainfall over the Korean Peninsula. Weather and Forecasting, 21,125-148. Kuo, Y. H.,and R. A. Anthes, 1982: Numerical simulation of a Mei-Yu system over Southeastern Asia , Papers Meteor. Res.,5,15-36. Kuo, Y. H., L. Cheng, and R. A. Anthes, 1986: Mesoscale analyses of the Sichuan flood catastrophe,11-15 July 1981. Mon.Wea.Rev., 114,1984-2003. Kuo,Y. H., and G. T.-J.Chen, 1990:The Taiwan area mesoscale experiments: An overview. Bull.Amer.Meteor.Sci.,36,437-457. Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 31, 118-133. Lafore, J. P., J. L. Redelsperger, and G. Jaubert, 1988: Comparison between a three-dimensional simulation and Doppler radar data of a tropical squall line: Transports of mass, momentum, heat, and moisture. J. Atmos.Sci.,45,3483-3500. Lau, N.-C., and J.-P. Jeffrey, 2009: Simulation of synoptic- and sub synoptic-scale phenomena associated with the East Asian summer monsoon using a high resolution GCM. Mon.Wea.Rev.,137,137-160. Lindzen, R. S. and S. Nigam, 1987: On the role of sea-surface temperature-gradients in forcing low-level winds and convergence in the tropics. Journal of the Atmospheric Sciences, 44 (17), 2418–2436. Lin, P. L., and S. Y. Liao, 1984: On the coexistence of the extratropical cyclone and the low-level jet in the vicinity of Taiwan. Bull, Geophy., 26,157-186. Lin De-En,and Ben J.-D. Jou , 2005: A model simulation of mesoscale convective systems in the Mei-Yu front, AOGS 2nd Annual Meeting 2005,Singapore. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092. Lin, Y.-L., S. Chiao, T.-A.Wang, M. L. Kaplan, and R. P.Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633-660. Maddox, R. A., C. F. Chappell and L. R. Hoxit, 1979: Synoptic and mesoscale aspects of flash flood events. Bull.Amer.Meteor. Soc.,60,115-123. Maddox, R. A. , 1980: Mesoscale convective complexes. Bull. Amer. Meteor.Soc., 61,1374-1387. Matsumoto, S., and K .Ninomiya, 1971: On the mesoscale and mediumscale structure of a cold front and relevant vertical circulation. J.Meteor.Soc., Japan, 49,Special Issue ,648-662. Matsumoto, S., 1972: Unbalanced low-level jet and solenoidal circulation associated with heavy rainfalls, J.Meteor.Soc., Japan, 50,194-203. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative trans-fer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res.,102( D14),16663-16682. Ninomiya , K., 1980: Enhancement of Asia subtropical front due to thermodynamic effect of cumulus convections. J . Meteor.Soc., Japan,58,1-15. Ninomiya, K., 1984: racteristics of Baiu front as a predominant subtropical front in the summer northern hemisphere. J. Meteor. Soc. Japan, 62, 880-894. Orlanski I., 1975: A rational subdivision of scales for atmospheric processes, Bull.Am.Met.Soc.,56,527-530. Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor. , 9, 857-861. Protat, A., and Y. Lemaitre, 2001: Scale interactions involved in the initiation,structure,and evolution of the 15 December 1992 MCS observed during TOGA COARE .Part I:Synoptic scale processes. Mon.Wea.Rev.,129,1757-1778. Punkka, A. J., and M. Bister, 2005: Occurrence of summertime convective precipitation and mesoscale convective systems in Finland during 2000-2001. Mon.Wea.Rev.,133,362-373. Qian, J. H., W. K. Tao, and K. M. Lau, 2004: Mechanisms for torrential rain associated with the Mei-Yu development during SCSMEX 1998. Mon.Wea.Rev.,132,3-27. Reisner, J., R. M. Rasmussen , and R. T. Bruintjes , 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart..J.Roy. Metero. Soc., 124B, 1071-1107. Schumacher , R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999-2003. Wea. Forecasting, 21,69-85. Shankar, D., S,. R, Shetye, and P. V. Joseph., 2007: Link between convection and meridional gradient of sea surface temperature in the Bay of Bengal. Journal of Earth System Science., 116, 385–406. Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology ,C .P. Chang and T. N. Krishnamurti, Eds.. Oxford University Press , 60-92. Tompkins, A. M., 2000: Organization of Tropical Convection in Low Vertical Wind Shears: The Role of Water Vapor. J. Atmos. Sci., 58, 529–545. Trier,S.B., and T. T. Matejta, 1990: Observations of a subtropical cold front in a region of complex terrain. Mon.Wea.Rev.,118, 2449-2470. Waliser, D. E., 1996: Formation and limiting mechanisms for very high sea surface temperature:Linking the dynamics and the thermodynamics. J.Climate,9,161-188. Wang, J. J., 2004: Evolution and structure of the mesoscale convection and its environment: A case study during the early onset of the southeast Asian summer monsoon. Mon. Wea.Rev.,132,1104-1120. Wang, W., and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea.Rev., 125,252-278. Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520. Yanai, M., S.Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J.Atmos.Sci., 30,611-627. Yang, M.-J.,F.-C Chien, and M.-D. Cheng, 2000: Precipitation parameterization in a simulated Mei-Yu front. Terr.Atmos. Oceanic Sci.,11,393-422. Yeh H. C., and Y.-L.Chen, 1998: Characteristics of rainfall distribution over Taiwan during TAMEX. J.Appl.Meteor.,37,1457-1469. Zhang, C., 1993: Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the Tropics. J. Climate, 6, 1898–1913. Zhang, D. L., and J. M. Fritsch, 1986: A case study of the sensitivity of numerical simulation of MCS to varying initial conditions. Mon. Wea. Rev., 114,248-2431. Zhang, D.-L., and J. M. Fritsch, 1988: Numerical sensitivity experiments of varying model physics on the structure, evolution and dynamics of two mesoscale convective systems. J.Atmos.Sci.,45,261-293. Zhang,Q.-H.,K.-H.Lau,Y.-H.Kuo, and S.-J.Chen, 2003: A numerical study of a mesoscale convective system over the Taiwan Strait. Mon. Wea.Rev.,131,1150-1170. Zipser, E. J., 1982: Use of a conceptual model of the life-cycle of mesoscale convective systems to improve very short-range forecasts. Nowcasting,K.Browning,Ed.,Academic Press,191-204. 王時鼎、鄭俠、徐晉淮及丘台光,1985:五、六月台灣地區暴雨之環境條件。天氣分析與預報研討會論文彙編,中央氣象局,55-77。 丘台光、廖學鎰,1984:華南及鄰近地區MCS之研究,大氣科學,11,85-99。 宋偉國、陳泰然與郭英華,1997:低層噴流和中尺度對流系統間的相關性研究,大氣科學,25,211-234。 李清勝,1990:TAMEX期間台灣海峽之水氣和能量收支。大氣科學,18,111–127。 林松錦與蔡欽明,1989:梅雨期間中尺度對流系統之動能收支分析,大氣科學,17, 187-209。 林得恩,1999:梅雨季中尺度對流系統與低層噴流之數值模擬,台灣大學大氣科學系碩士論文。 周仲島、洪景山及鄧秀明,1995:TAMEX IOP13鋒面雨帶之個案研究(一):低層噴流和垂直風切在激發、組織與維持雨帶的角色。大氣科學,23,179-207。 周仲島,1997:台灣地區梅雨季中尺度降水系統之觀測研究。國科會專題研究計畫成果報告,NSC86-211-M-002-005,8頁。 周仲島、楊黎明、林得恩、魏志憲,2000:1999年梅雨季豪雨實驗研究—伴隨梅雨鋒面中尺度對流系統之個案初步分析。第二屆國際海洋大氣會議論文彙編,中央氣象局,217-222。 施鈞倫,2003:梅雨期中尺度對流系統之分析與模擬,中國文化大學地學研究所碩士論文。 柳艷菊、丁一匯、宋艷玲,2005:1998年夏季風爆發前後、南海地區的水氣輸送和水氣收支,熱帶氣象學報,21,55-63. 洪景山,2002;武夷山地形和海洋邊界層在梅雨鋒面南下過程中扮演的角色。大氣科學,30,275-287。 洪景山、林得恩、簡芳菁、劉素屏、周仲島、林沛練、張文錦、繆璿如、陳致穎、雷銘中,2006:WRF 模式之敏感度測試,第一部分:探空測站上的校驗。大氣科學,34,241-260。 紀水上、陳泰然,1988:中尺度對流複合體環境條件之個案診斷分析:1981年5月27-28日個案。大氣科學,16,14-30。 紀水上、陳泰然,1989:第一階段TAMEX密集觀測之個案對流系統與降水研究。大氣科學,17,59-75。 黃文亭、陳泰然、林宗嵩,1999:台灣地區梅雨季之中尺度對流系統研究。第六屆全國大氣科學學術研討會論文彙編,國科會,378-383。 陳正改,1979:梅雨面所伴隨之低層噴射氣流和台灣地區豪雨之關係。大氣科學,6,1,29-37。 陳正改、蔡清彥,1980;影響台灣北部地區之梅雨系統。大氣科學,7,49–58。 陳泰然、吳清吉,1978:台灣五大城市之氣候特性分析。大氣科學,5,1-16。 陳泰然、蒲金標,1985:華南春季低層噴流之形成與台灣北部地區豪雨之個案分析,大氣科學,12,23-32。 陳泰然,1988:東亞梅雨鋒面之綜觀氣候特徵研究,大氣科學,16,435-446。 陳泰然、王重傑、周鴻祺,2003:TAMEX IOP - 13颮線個案特徵之觀測研究。大氣科學,31,131-158。 陳泰然,2007:最近之梅雨研究回顧。大氣科學,35,261-286。 連瑩穎,2004:MYEX98 梅雨鋒面個案之模擬探討,中央大學大氣物理研究所碩士論文。 張子琦,2004:梅雨季台灣中南部地區豪雨事件之數值模擬研究,台灣大學大氣科學研究所博士論文。 張子琦與陳泰然,2001:TAMEX期間台灣西南部地區弱綜觀強迫下之垂直運動研究。大氣科學,29,171-190. 張慶紅,1999:台灣海峽上空中尺度對流系統的數值研究,北京大學地球物理系博士論文。 賈愛玫,2001:華南地區梅雨季低層噴流生成之分析,中央大學大氣物理研究所碩士論文。 蒲金標,1989:梅雨季華南低層噴流與中尺度對流系統之個案研究,中國文化大學地學研究所博士論文。 蒲金標與陳泰然,1988:梅雨季華南低層噴流與中尺度對流系統之初步分析,氣象學報,34,4,285-297。 劉崇治與劉振榮,2000:應用衛星資料在梅雨季海上中尺度對流系統生成前兆之初步探討。大氣科學,28,317-341。 戴俐卉,2000:1997和1998年梅雨季中尺度對流系統之氣候特徵。台灣大學大氣科學所碩士論文。 簡芳菁、蕭育琪、周仲島、林沛練、楊明仁、洪景山、鄧仁星、林慧娟,2002:MM5系集降水預報之校驗,大氣科學,31,77-92. 簡芳菁、張文錦、周仲島、林沛練、洪景山、林得恩、劉素屏、繆璿如、陳致穎,2006:WRF 模式之敏感度測試,第二部分:定量降水預報校驗。大氣科學,34, 261-158。 顏芳,2002:台灣附近地面強風演變過程之動力分析,中央大學大氣物理研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45082 | - |
| dc.description.abstract | 本研究統計1987至2008年梅雨季台灣地區發生「超大豪雨」事件發現,以台灣西南部測站發生機率最高,多集中在5月下旬至6月中旬;且與梅雨鋒之MCS關係密切。本文選取降雨分佈範圍最廣、降雨量最豐,且降雨延時最久的2005年6月12至15日及2006年6月8至11日兩個案進行研究。
從綜觀環境條件與降水特徵顯示,兩個案共通特徵包括(1)低對流層屬暖濕條件性不穩定大氣,(2)最大相當位溫梯度以及水氣梯度分布於700 hPa以下,(3)低層輻合均為個案中MCS之重要激發機制,(4)有明顯低層西南噴流,大氣呈現對流性不穩定狀態,(5)中層短波槽線的移入,以及(6)高層輻散分流場的存在,提供MCS發展的有利環境條件。最大的差異則為2006年個案的垂直風切、低層噴流、中層槽線、高層噴流以及垂直偶合均較2005年個案來的顯著。降雨特徵方面,2005年個案主要降雨區域在於西南部平原,其中在嘉南地區平地降水大於山區,高屏地區則降水最大處集中在山區,最大降雨區出現於屏東山區,最大日降雨量為585 mm,日夜變化顯著;2006年個案主要降雨區域在於中部及南部山區,其中在中部及高屏地區降水最大處多集中在山區,在嘉南地區山區降水則大於平地,最大日降雨量為718 mm,日夜變化較不顯著。 兩個案之MCS皆伴隨顯著集中之垂直渦度,針對MCS垂直渦度之診斷分析顯示,兩個案渦度發展與維持的機制主要來自於渦度輻散項及垂直平流項,系統移動的主要機制則是受到水平平流效應主導。由水氣收支計算可得到水平水氣通量輻合對於對流系統之水氣來源扮演正回饋作用,其中2006年個案中水氣通量(水平輻合)較2005年個案來得大。2006年個案之鋒生過程顯著,中低層鋒生過程扮演導致鋒面對流系統之發展與維持重要角色;而低層噴流生成的條件主要來自於橫向非地轉風垂直分布之噴生作用。 選擇對區域預報能力、對中尺度天氣系統與天氣現象掌握相當不錯的WRF模式進行模擬,結果顯示兩個案在綜觀環境的模擬與實際觀測結果大致相似,惟在風場模擬結果偏弱,溫度場則明顯偏高。另外,在降水部份,模式對台灣地區降水分佈具有相當良好之掌握,惟強度上在2006年降水強度明顯偏弱,且東部地區降水掌握較不理想。 綜合而言,2005年個案中梅雨鋒面結構為垂直近乎不傾斜的淺系統,槽線系統不明顯,鋒面水平溫度梯度微弱,低層具有強水平氣旋式風切,較似正壓系統,個案中MCS發展及維持機制,主要是透過CISK 過程來維持;其過程是由於低層鋒面帶上之輻合激發對流發展,對流潛熱釋放造成局部氣壓梯度增強,因而增強地轉風;而潛熱釋放亦有利低層輻合之增強,產生非地轉風,再透過科氏加速增強西南風,使LLJ增強,形成一正向的回饋作用。而2006年個案屬發展中斜壓系統特徵較為明顯,個案中鋒面及其伴隨之MCS發展及維持機制,主要是透過斜壓過程來維持;其過程是由滯留鋒面帶上存在的低層輻合,中層鋒生效應顯著,再配合高層之噴流輻散移入,且地面低壓系統位於中高層槽前之不穩定區,地面至高層系統垂直偶合顯著,進而誘發地面低壓系統增強並發展,造成局部氣壓梯度增強,亦使得LLJ增強,形成MCS發展的有利環境條件。 | zh_TW |
| dc.description.abstract | From the statistic results showed that the “extremely torrential rain” events produced by the Mei-Yu fronts in Taiwan area from 1987 to 2008 were mostly occurred over the southwestern parts of Taiwan between late May and mid-June. In this study, the two cases about the wide-spread and long-lasting rainfall due to MCSs in Taiwan area on 12-15 June 2005 and 8-11 June 2006.
In terms of the synoptic environment and precipitation characteristics, there were some common characteristics in these two cases. For instance, warm and moist air with the conditional instability atmosphere in the lower troposphere, it was associated with the highest equivalent potential temperature (θe) gradient and strong moisture contrast to below 700 hPa. The lower-level convergence was the major produced mechanism of MCS and the low-level southwesterly flow generated convective instability. The mid-level trough and upper-level divergence were the favorable conditions for the developments of mesoscale convection systems(MCSs). The difference between case 2005 and case 2006 is that the vertical wind shear, low-level jet (LLJ), mid-level trough, upper-level jet and vertical coupling in case 2006 are obvious than case 2005. The case of 2005, heavy rainfall occurred over the southwestern plain of Taiwan, especially in the Chianan Plain, it was heavier than in the mountain area. The maximum accumulation of daily rainfall (585mm) was occurred in the mountain area of Ping-dong County and the diurnal change was obvious in case 2005. However, the maximum daily rainfall in case 2006 (718mm) was heavier in mountain area than in the Chianan Plain, and its diurnal change was not obvious. The analytic results show that the mechanisms of MCSs’ development and maintenance in both cases were derived from vorticity divergence and vertical advection, the movement of MCSs was dominated by the horizontal advection effect. From the moisture budget, the horizontal moisture flux convergence showed positive feedback in the convective systems. The moisture flux (horizontal convergence) in case 2006 was more than case 2005. The frontogenesis process in case 2006 was obvious; it showed that the front system was accompanied with a strong temperature gradient. The mid and low-level frontogenesis process played an important role in the development and maintenance of causing the front convective systems. The jets were formed with the difference of horizontal ageostrophic wind in vertical direction. The WRF modeling results showed that the simulation patterns were similar to the observation. Only the wind field was weaker and the temperature field was higher than observation. In addition, the model precipitation simulation pattern did well in Taiwan area, but the intensity was weaker in case 2006. It was not ideal in eastern Taiwan area was not ideal in case 2006. In the conclusion, the Mei-Yu front in case 2005 was shallow in structure with weak temperature gradient, strong horizontal wind shear and with no significant trough systems. The mechanism was similar to the equivalent barotropic warm core structure. The Conditional Instability of the Second Kind (CISK) was the primary mechanism of development and maintenance for MCSs in case 2005. As the MCSs intensified and persisted, the latent heating was highly efficient in producing significant enhancement of Mei-Yu front systems. The LLJ intensified by Coriolis acceleration of ageostrophic wind was induced by the effect of latent heat release. The LLJ and the effect of latent heat released reinforce each other in convection system through a positive feedback process. However, the baroclinic structure of Mei-Yu front in case 2006 was very clear. The primary mechanism of MCSs for development and maintenance was depended on the baroclinic process. The low-level convergence, mid-level frontogenesis, upper-level divergence and the depression system were vertically superposed in the front system. The deepening and strengthening of the surface low was derived from the vertical coupling process, which supplied feedback enabling LLJ to be intensified and promoted a favorable environment for MCSs to development. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:03:46Z (GMT). No. of bitstreams: 1 ntu-99-D89229003-1.pdf: 23076928 bytes, checksum: 972ab385a1db2cccf4438399569c69fa (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II 英文摘要 IV 目錄 VII 圖目錄 IX 表目錄 XIX 第 一 章 前 言………………………………………………1 1.1 研究論文回顧………………………………………………..1 1.1.1 伴隨梅雨鋒面之MCS的有利環境條件……………2 1.1.2 伴隨梅雨鋒面之MCS的激發機制…………………3 1.1.3 伴隨梅雨鋒面之MCS的演變過程…………………5 1.1.4 伴隨梅雨鋒面之MCS與豪雨天氣…………………6 1.1.5 伴隨梅雨鋒面之MCS與水氣供輸…………………7 1.1.6 伴隨梅雨鋒面之 MCS與低層噴流…………………10 1.2 研究動機與研究目的 ……………………………………12 第 二 章 資料處理及分析方法 ……………………………14 2.1 統計分析的資料內容與分析方法 ………………………14 2.2 研究分析的資料內容與分析方法 ………………………17 第 三 章 梅雨季MCS的統計特徵與個案選取……………22 3.1 伴隨梅雨鋒面之MCS的時空分佈特徵…………………22 3.2 伴隨梅雨鋒面之MCS與豪雨……………………………23 3.3 個案選取 …………………………………………………25 3.4 小結…………………………………………………………25 第 四 章 研究個案中的環境條件與降水特徵……………27 4.1 研究個案中的環境條件…………………………………27 4.2 研究個案中的降水特徵…………………………………40 4.3 小結…………………………………………………………43 第 五 章 研究個案之診斷分析……………………………44 5.1 渦度通量收支診斷………………………………………44 5.2 水氣通量收支診斷………………………………………47 5.3 鋒生過程診斷……………………………………………49 5.4 噴生函數診斷……………………………………………53 5.5 小結…………………………………………………………55 第 六 章 WRF數值模擬與敏感度測試 …………………57 6.1 數值模擬結果……………………………………………58 6.2 數值模擬校驗……………………………………………63 6.3 敏感度測試………………………………………………66 6.4 小結…………………………………………………………69 第 七 章 討 論………………………………………71 第 八 章 結 論………………………………………79 參考文獻:…………………………………………………………83 圖 …………………………………………………………………96 表 …………………………………………………………………184 | |
| dc.language.iso | zh-TW | |
| dc.subject | 中尺度對流系統 | zh_TW |
| dc.subject | 梅雨鋒面 | zh_TW |
| dc.subject | Mei-Yu front | en |
| dc.subject | MCSs | en |
| dc.title | 梅雨季超大豪雨個案之模擬與診斷分析 | zh_TW |
| dc.title | Numerical simulation and diagnostic analysis of extreme rainfall events during the Mei-Yu season | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳泰然,郭鴻基,吳俊傑,林沛練,洪景山,王重傑 | |
| dc.subject.keyword | 梅雨鋒面,中尺度對流系統, | zh_TW |
| dc.subject.keyword | Mei-Yu front,MCSs, | en |
| dc.relation.page | 190 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-02-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 22.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
