Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45077
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張所鋐
dc.contributor.authorJung-Hui Hsuen
dc.contributor.author徐榮輝zh_TW
dc.date.accessioned2021-06-15T04:03:35Z-
dc.date.available2010-02-24
dc.date.copyright2010-02-24
dc.date.issued2010
dc.date.submitted2010-02-11
dc.identifier.citation[1] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, Vol. 318, pp. 162-163, 1985.
[2] J. C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, U. Kaiser, “Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes,” Nano lett., vol. 9, p. 2683, 2009.
[3] P. B. Mirkarimi, K. F. McGarty, D. L. Medlin, “Review of advances in cubic boron nitride film synthesis,” Mater. Sci. Eng. R, vol. 21 p. 47, 1997.
[4] B. Akdim, R. Pachter, X. Duan, and W. W. Adams, “Comparative theoretical study of single-wall carbon and boron-nitride nanotubes,” Phys. Rev. B, vol. 67, p. 245404, 2003.
[5] M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Carbon fibers based on C60 and their symmetry,” Phys. Rev. B, vol. 45, p. 6234, 1992.
[6] M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes,” Carbon, vol. 33, no. 7, p. 883, 1995.
[7] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective raman scattering from vibrational modes in carbon nanotubes,” Science, vol. 275, no. 5297, p. 187, 1997.
[8] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Synthetic Metals, vol. 103, p. 2555, 1999.
[9] S. Iijima, “Helical microtubules of graphite carbon,” Nature, vol. 354, p. 56, 1991.
[10] M. Ishigami, S. Aloni, and A. Zettl, “Properties of Boron Nitride Nanotubes,” In Proc. 12th AIP Int. Conf. STM/Spectroscopy and related techniques, vol.696, p. 94, 2003.
[11] N. G. Chopra, R. J. Luyken, K.Cherrey, V. H.Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, “Boron nitride nanotubes,” Science, vol. 269, p. 966, 1995.
[12] C. W. Chang, W. Q. Han, and A. Zettl, “Thermal conductivity of B-C-N and BN nanotubes,” J. Vac. Sci. Technol. B, vol. 23, p.1883, 2005.
[13] D. Golberg, Y. Bando, L. Bourgeois, and K. Kurashima, and T. Sato, “Insight into the structure of BN nanotubes,” Appl. Phys. Lett., vol. 77, p. 1979, 2000.
[14] E. W. Wang, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, vol. 277, pp.1971-1974, 1997.
[15] N. G. Chopra and A. Zettl, “Measurement of the elastic modulus of a multi-wall boron nitride nanotube,” Solid State Commun., vol. 105, p. 297, 1998.
[16] G. Binnig, C. F. Quate and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett., vol. 56, p. 930, 1986.
[17] M. C. Mate, G. M. McClelland, R. Erlandsson and S. Chiang, “Atomic-scale friction of a tungsten tip on a graphite surface,” Phys. Rev. Lett., vol.59, p.1942, 1987.
[18] F. S. Teixeira, R. D. Mansano, M. C. Salvadori, M. Cattani and I. G. Brown, “Atomic force microscope nanolithography of polymethylmethacrylate polymer,” Rev. Sci. Instrum., vol. 78, p. 53702, 2007.
[19] C. Baur, B. C. Gazen, B. Koel, T. R. Ramachandran, A. A. G. Requicha, and L. Zini, “Robotic nanomanipulation with a scanning probe microscope in a networked computing environment,” J. Vac. Sci. Technol. B, vol. 15, p. 1577, 1997.
[20] M. R. Falvo, R. M. Taylor II, V. Chi, Jr F. P. Brooks, S. Washburn and R. Superfine, “Nanometre-scale rolling and sliding of carbon nanotubes,” Nature, vol. 397, p. 236, 1999.
[21] M. R. Falvo, J. Steele, R. M. Taylor II and R. Superfine, “Gearlike rolling motion mediated by commensurate contact: carbon nanotubes on HOPG,” Phys. Rev. B, vol. 62, p. R10665, 2000.
[22] M. R. Falvo, G. J. Clary, R. M. Taylor II, V. Chi, F. P. Brooks Jr, S. Washburn, and R. Superfine, “Bending and buckling of carbon nanotubes under large strain,” Nature, vol. 389, p. 582, 1997.
[23] M. R. Falvo, G. Clary, A. Helser, S. Paulson, R. M. Taylor II, V. Chi, F. P. Brooks, Jr., S. Washburn, and R. Superfine, “Nanomanipulation experiments exploring friction and mechanical properties of carbon nanotubes,” Microsc. Microanal., vol. 4, p. 504, 1999.
[24] T. Hertel, R. Martel, and P. Avouris, “Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces,” J. Phys. Chem. B, vol. 102, p. 910, 1998.
[25] Z. Shen, S. Liu, S. Hou, Z. Gu, and Z. Xue, “In situ splitting of carbon nanotube bundles with atomic force microscopy,” J. Phys. D: Appl. Phys., vol. 36, p. 2050, 2003.
[26] S. S. Wong, A. T. Woolley, T. W. Odom, J. Huang, P. Kim, D. V. Vezenov, and C. M. Leiber, “Single-walled carbon nanotubes probes for high-resolution nanostructure imaging,” Appl. Phys. Lett., vol. 73, p. 3465, 1998.
[27] J. D. Whittaker, E. D. Minot, D. M. Tanebaum, P. L. McEuen, and R. C. Davis, “Measurement of the adhesion force between carbon nanotubes and a silicon dioxide substrate,” Nano Lett., vol. 6, p. 953, 2003.
[28] T. Hertel, R. E. Walkup, and P. Avouris, “Deformation of carbon nanotubes by surface van der Waals forces,” Phys. Rev. B, vol. 58, p. 13870, 1998.
[29] N. K. Chang, C. C. Su, and S. H. Chang, “Fabrication of single-walled carbon nanotube flexible strain sensor with high sensitivity,” Appl. Phys. Lett., vol. 92, p.063501, 2008.
[30] C. S. Wei, C. C. Su and S. H. Chang, “Metallic Switching of Semiconducting Single-Walled Carbon Nanotubes with ZnO Thin Film,” Appl. Phys. Lett., vol. 92, p. 213501, 2008.
[31] Gmelins Handbuch der Anorganischen Chemie. Kohlenstoff Teil B; Verlag Chemie: Weinheim, 1968.
[32] http://www.doitpoms.ac.uk/
[33] B. Bhushan, Handbook of Micro/Nano Tribology, CRC Press, Boca Raton, 1999.
[34] W. Kern, Handbook of semiconductor wafer cleaning technology, Noyes publications, New Jersay, 1993.
[35] S. Iijima, and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, p. 603, 1993.
[36] D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, vol. 363, p. 605, 1993.
[37] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes,” Science, vol. 273, p. 483, 1996.
[38] M. J. Yacaman, M. M. Yoshida, L. Rendon, J. G. Santiesteban, “Catalytic Growth of carbon microtubules with fullerence structure,” Appl. Phys. Lett., vol. 62, p. 202, 1993.
[39] M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, and H. W. Kroto, “The production and structure of pyrolytic carbon nanotubes (PCNTs),” J. Phys. Chem. Solid, vol. 54, p. 1841, 1993.
[40] A. Loiseau, F. Williame, N. Demoncy, G. Hug, and H. Pascard, “Boron Nitride Nanotubes with Reduced Numbers of Layers Synthesized by Arc Discharge,” Phys. Rev. Lett., vol. 76, p. 4737, 1996.
[41] M. Terrones, W. K. Hsu, H. Terrones, J. P. Zhang, S. Romas, J. P. Hare, R. Castillo, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, “Metal particle catalysed production of nanoscale BN structures,” Chem. Phys. Lett., vol. 259, p. 568, 1996.
[42] D. P. Yu, X. S. Sun, C. S. Lee, I. Bello, S. T. Lee, H. D. Gu, K. M. Leung, G. W. Zhou, Z. F. Dong, and Z. Zhang, “Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature,” Appl. Phys. Lett., vol. 72, p. 1966, 1998.
[43] T. Laude, Y. Matsui, A. Marraud, and B. Jouffrey, “Long ropes of boron nitride nanotubes grown by a continuous laser heating,” Appl. Phys. Lett., vol. 76, p. 3239, 2000.
[44] M. Terauchi, M. Tanaka, K. Suzuki, A. Ogino, and K. Kimura,” “Production of zigzag-type BN nanotubes and BN cones by thermal annealing,” Chem. Phys. Lett., vol. 324, p. 359, 2000.
[45] O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff, and W. E. Buhro, “CVD growth of boron nitride nanotubes,” Chem. Mater., vol. 12, p. 1808, 2000.
[46] J. S. Wang, V. K. Kayastha, Y. K. Yap, Z. Y. Fan, J. G. Lu, Z. W. Pan, I. N. Ivanov, A. A. Puretzky, D. B. Geohegan, “Low Temperature growth of boron nitride nanotubes on substrates,” Nano Lett., vol. 5, p. 2528, 2005.
[47] J. N. Israelachvili, Intermolecular and surface forces, Academic press, San Diego, 1991.
[48] T. Kosugi, H. Ishii, and Y. Arita, “Effects of hydrogenation of hydrogen termination of p + -silicon (100) surfaces by hydrofluoric acid,” J. Vac. Sci. Technol. A, vol. 15, p. 127, 1997.
[49] V. Verma, V. K. Jindal, and K. Dharamvir, “Elastic moduli of a boron nitride nanotube,” Nanotechnology, vol. 18, p. 435711, 2007.
[50] S. H. Jhi and Y. K. Kwon, “Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage,” Phy. Rev. B, vol. 69, p. 245407, 2004.
[51] J. S. Arellano, L. M. Molina, A. Rubio, M. J. Lopez, and J. A. Alonso, “Interaction of molecular and atomic hydrogen with (5,5) and (6,6) single-wall carbon nanotubes,” J. Chem. Phys., vol. 117, p. 2281, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45077-
dc.description.abstract本文主要針對一維奈米材料與半導體表面之間的摩擦與吸附性質來做研究與討論,一維奈米材料將被放置在原子力顯微鏡中,利用原子力顯微鏡側向操控的特性,進而找出奈米管與半導體表面之間的摩擦吸附性,不但在設計奈米元件上有所助益,甚至可應用到能量儲存的元件上。本實驗將採用多層奈米碳管和氮化硼奈米管為實驗對象,並使用矽和二氧化矽做為半導體的基材,經側向操控後,奈米管於半導體表面上滑移轉動,而奈米材料與半導體之間的摩擦吸附性質將在文中一一討論。
第一利用原子力顯微鏡研究多層奈米碳管與二氧化矽的摩擦吸附性質。利用原子力顯微鏡的側向操控的特性,可觀察到多層奈米碳管於二氧化矽上滑移轉動,同步取得側向力曲線的變化,再經由整理之後,得知兩者之間的吸附力,再根據多層奈米碳管與二氧化矽的接觸面積,即可計算出多層奈米碳管與二氧化矽之間的剪應力,大約是60 MPa。再依據實驗結果,可發現剪應力與多層奈米碳管轉動角度是線性相關,我們也將在文中歸納出施力點與轉動支點的關係,再針對多層奈米碳管的轉動現象與吸附性逐步探討。
第二接著探討氮化硼奈米管與矽晶片的摩擦吸附性。同樣利用原子力顯微鏡的側向操控功能,也可以在實驗的過程中,也可觀察出氮化硼奈米管於矽的表面上滑移轉動情形後,藉由所得的側向力曲線得知,得知兩者之間的吸附力,再配合修正之後的接觸面積,與滑移轉動的面積,可以計算出氮化硼奈米管與矽晶片之間的剪應力與比滑移能量損耗,大約是0.5 GPa與0.2 J/m2,然後再與其他相關文獻比較之後,結果發現氮化硼奈米管吸附能力比較好,因此氮化硼奈米管非常適合運用於儲氫元件上。
最後本研究的結果驗證原子力顯微鏡可以拿來操控奈米材料,而且能精準的定位奈米材料的位置,對於研究奈米科技可以提高準確度,另外期望MWCNT與BNNT的研究結果,可以作為日後設計奈米元件的依據。
zh_TW
dc.description.abstractThe target of this dissertation is the tribological interaction between one dimension nano material and semi-conductor surface. One dimension nano materials are manipulated in an atomic force microscope (AFM), and tribological properties of nanotube-surface are discovered. So we can use the information of the tribological properties of nanotube-surface to design nano devices or energy storage. In our experiments, we adopted the multi-walled carbon nanotubes (MWCNTs) and boron nitride nanotubes (BNNT) to be one dimension nano material. Silica and silicon which properties both are semi-conductor are used as substrate materials. Therefore, we discussed the tribological interaction between one dimension nano material and semi-conductor surface in detail.
The tribological interaction between MWCNTs and silica surface using lateral manipulation in the AFM. The MWCNT is mechanically manipulated by a pyramidal silicon probe of an AFM using the same scan mechanism as in the imaging mode. With a controlled normal force of the AFM probe, it was found that lateral force applied to the MWCNT could overcome the tribological adhesion between MWCNT and silica surface, causing individual MWCNT to rotate on the silica. According to the results, the shear stresses due to tribological interacting with the MWCNTs and the silica are 59.6 MPa and 64.8 MPa for the MWCNT 1 (100 nm diameter) and the MWCNT 2 (60 nm diameter), respectively. Experimental results show that the shear stress increases with the increasing rotation angle for each manipulation, from which we determine the linear fitting function. In addition, we determine the relationship between push point and pivot point to realize the rotation behavior. The implications of tribological interaction between the MWCNTs and silica surface are discussed in detail.
The tribological interaction between BNNTs and silicon was studied with lateral manipulation in AFM. The BNNTs was mechanically manipulated by the lateral force of an AFM pyramidal silicon probe using the scan mechanism in the imaging mode. With a controlled normal force of the AFM probe and the lateral motion, the lateral force applied to the BNNTs could overcome the tribological interaction between BNNTs and silicon surface. The individual BNNT is forced to slide and rotate on the silicon surface. Based on the recorded force curve, the calculated shear stress due to surface adhesion is 0.5 GPa. And the specific sliding energy loss is 0.2 J/m2. Comparing BNNTs and CNTs [24], the shear stress and specific sliding energy loss of BNNTs are an order of magnitude larger than that of CNTs. Therefore, the results show that the tribological interaction between BNNTs and silicon surface is higher than that of CNTs.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:03:35Z (GMT). No. of bitstreams: 1
ntu-99-D90522010-1.pdf: 7330338 bytes, checksum: 8c1424a8ad7e4175528f6043b77ae210 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目 錄
口試委員會審定書
誌謝
中文摘要…………………………………………………………i
英文摘要…………………………………………………………iii
目錄…………………………………………………………v
圖目錄………………………………………………………………vii
第一章 緒論……………………………………………………1
1.1 背景介紹……………………………………………………1
1.2 奈米碳管之組成結構與物理特性…………………………4
1.3 氮化硼奈米管之組成結構與物理特性…………………7
第二章 文獻回顧………………………………………………9
2.1 推動奈米金顆粒………………………………………9
2.2 推動奈米碳管…………………………………………11
2.3 彎折多層奈米碳管……………………………………16
2.4 切斷奈米碳管…………………………………………17
2.5 SWCNT從單層奈米碳管叢移出…………………………19
2.6 奈米碳管與矽表面之間的束縛能與形變………………21
2.7 奈米碳管與矽表面的摩擦力和剪應力…………………25
第三章 奈米操控實驗系統………………………………………26
3.1 奈米操控系統…………………………………………26
3.2 原子力顯微鏡…………………………………………30
3.3 原子力顯微探針………………………………………33
3.4 原子力顯微鏡側向力的校正…………………………36
第四章 奈米碳管與氮化硼奈米管的試片製備……………38
4.1 清洗矽晶片的流程…………………………………38
4.2 多層奈米碳管的製備………………………………40
4.3 氮化硼奈米管製備…………………………………47
第五章 實驗結果與討論……………………………………49
5.1 轉動現象與側向力的定義…………………………49
5.2 操控奈米碳管的實驗結果與討論…………………52
5.3 操控氮化硼奈米管的實驗結果與討論……………61
第六章 結論與未來展望……………………………………67
6.1 結論…………………………………………………67
6.2 未來展望……………………………………………68
參考文獻…………………………………………………………69
個人著作…………………………………………………………75
dc.language.isozh-TW
dc.title一維奈米材料與半導體材料表面摩擦性質之研究zh_TW
dc.titleTribological interaction between one dimensional nano material and semi-conductor surfaceen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee施文彬,蔡曜陽,張家歐,黃榮堂
dc.subject.keyword原子力顯微鏡,多層奈米碳管,氮化硼奈米管,矽,二氧化矽,剪應力,比滑移能量損耗,摩擦吸附性,zh_TW
dc.subject.keywordatomic force microscope,multi-walled carbon nanotubes,boron nitride nanotube,silicon,silica,shear stress,specific sliding energy loss,tribological interaction,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2010-02-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
7.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved