請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4505
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊申語(Sen-Yeu Yang) | |
dc.contributor.author | Chia-Yu Hung | en |
dc.contributor.author | 洪嘉佑 | zh_TW |
dc.date.accessioned | 2021-05-14T17:42:48Z | - |
dc.date.available | 2020-08-19 | |
dc.date.available | 2021-05-14T17:42:48Z | - |
dc.date.copyright | 2015-08-19 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-13 | |
dc.identifier.citation | [1] Becker, H. and U. Heim, 'Hot embossing as a method for the fabrication of polymer high aspect ratio structures', Sensors and Actuators A: Physical, 83(1–3): p. 130-135 (2000)
[2] 張哲豪, '流體微熱壓製程開發研究', 臺灣大學機械工程研究所博士論文 (2004) [3] Lee, K.-L., et al., 'Enhancing Surface Plasmon Detection Using Template-Stripped Gold Nanoslit Arrays on Plastic Films', ACS Nano, 6(4): p. 2931-2939 (2012) [4] Chou, S.Y., P.R. Krauss, and P.J. Renstrom, 'Nanoimprint lithography', Journal of Vacuum Science & Technology B, 14(6): p. 4129-4133 (1996) [5] Tan, H., A. Gilbertson, and S.Y. Chou, 'Roller nanoimprint lithography', Journal of Vacuum Science & Technology B, 16(6): p. 3926-3928 (1998) [6] Haisma, J., et al., 'Mold‐assisted nanolithography: A process for reliable pattern replication', Journal of Vacuum Science & Technology B, 14(6): p. 4124-4128 (1996) [7] Narasimhan, J. and I. Papautsky, 'Polymer embossing tools for rapid prototyping of plastic microfluidic devices', Journal of Micromechanics and Microengineering, 14(1): p. 96 (2004) [8] Chang, J.H. and S.Y. Yang, 'Gas pressurized hot embossing for transcription of micro-features', Microsystem Technologies, 10(1): p. 76-80 (2003) [9] Wood, R., 'On a remarkable case of uneven distribution of light in a diffraction grating spectrum', The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4(21): p. 396-402 (1902) [10] Fano, U., 'The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces', Journal of the Optical Society of America, 31(3): p. 213-222 (1941) [11] Gordon, R., 'Light in a subwavelength slit in a metal: Propagation and reflection', Physical Review B, 73(15): p. 153405 (2006) [12] Moreau, A., et al., 'Enhanced transmission of slit arrays in an extremely thin metallic film', Journal of Optics A: Pure and Applied Optics, 9(2): p. 165 (2007) [13] Cao, Q. and P. Lalanne, 'Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits', Physical review letters, 88(5): p. 057403 (2002) [14] Lalanne, P., J. Rodier, and J. Hugonin, 'Surface plasmons of metallic surfaces perforated by nanohole arrays', Journal of Optics A: Pure and Applied Optics, 7(8): p. 422 (2005) [15] Hessel, A. and A.A. Oliner, 'A New Theory of Wood’s Anomalies on Optical Gratings', Applied Optics, 4(10): p. 1275-1297 (1965) [16] Homola, J., S.S. Yee, and G. Gauglitz, 'Surface plasmon resonance sensors: review', Sensors and Actuators B: Chemical, 54(1): p. 3-15 (1999) [17] Ritchie, R., et al., 'Surface-plasmon resonance effect in grating diffraction', Physical Review Letters, 21(22): p. 1530 (1968) [18] Raether, H., 'Surface plasmons on smooth surfaces', Springer (1988) [19] Liedberg, B., C. Nylander, and I. Lunstrom, 'Surface plasmon resonance for gas detection and biosensing', Sensors and Actuators, 4(0): p. 299-304 (1983) [20] Homola, J., 'Present and future of surface plasmon resonance biosensors', Analytical and Bioanalytical Chemistry, 377(3): p. 528-539 (2003) [21] MacBeath, G. and S.L. Schreiber, 'Printing Proteins as Microarrays for High-Throughput Function Determination', Science, 289(5485): p. 1760-1763 (2000) [22] Hu, W.P., et al., 'A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film', Biosensors and Bioelectronics, 19(11): p. 1465-1471 (2004) [23] Ebbesen, T.W., et al., 'Extraordinary optical transmission through sub-wavelength hole arrays', Nature, 391(6668): p. 667-669 (1998) [24] Brolo, A.G., et al., 'Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films', Langmuir, 20(12): p. 4813-4815 (2004) [25] Raman C. V. , K.K.S., 'A new type of secondary radiation', Nature, 121: p. pp. 501-502 (1928) [26] Hollas, J.M., 'Modern spectroscopy', John Wiley & Sons (2004) [27] Jeanmaire, D.L. and R.P. Van Duyne, 'Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode', Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84(1): p. 1-20 (1977) [28] Albrecht, M.G. and J.A. Creighton, 'Anomalously intense Raman spectra of pyridine at a silver electrode', Journal of the American Chemical Society, 99(15): p. 5215-5217 (1977) [29] Kneipp, K., et al., 'Single molecule detection using surface-enhanced Raman scattering (SERS)', Physical review letters, 78(9): p. 1667 (1997) [30] Weber, W. and S. McCarthy, 'Surface-plasmon resonance as a sensitive optical probe of metal-film properties', Physical Review B, 12(12): p. 5643 (1975) [31] Gersten, J. and A. Nitzan, 'Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces', The Journal of Chemical Physics, 73(7): p. 3023-3037 (1980) [32] Kegel, L.L., N. Menegazzo, and K.S. Booksh, 'Adsorbate–Metal Bond Effect on Empirical Determination of Surface Plasmon Penetration Depth', Analytical chemistry, 85(10): p. 4875-4883 (2013) [33] 鄭照賢, '利用斜向蒸鍍技術和金奈米狹縫結構整合表面電漿共振及表面增強拉曼散射雙重檢測技術', 國立陽明大學生醫光電研究所碩士論文 (2013) [34] Zhou, Q., et al., 'Arrays of aligned, single crystalline silver nanorods for trace amount detection', Journal of Physics D: Applied Physics, 41(15): p. 152007 (2008) [35] Gao, R., et al., 'Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor', Analytica chimica acta, 681(1): p. 87-91 (2010) [36] Kim, A., S.J. Barcelo, and Z. Li, 'SERS-based pesticide detection by using nanofinger sensors', Nanotechnology, 26(1): p. 015502 (2015) [37] Mosier-Boss, P. and S. Lieberman, 'Detection of volatile organic compounds using surface enhanced Raman spectroscopy substrates mounted on a thermoelectric cooler', Analytica Chimica Acta, 488(1): p. 15-23 (2003) [38] Kreno, L.E., et al., 'SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy', Analyst, 139(16): p. 4073-4080 (2014) [39] Li, J.-R., R.J. Kuppler, and H.-C. Zhou, 'Selective gas adsorption and separation in metal–organic frameworks', Chemical Society Reviews, 38(5): p. 1477-1504 (2009) [40] Robin, A.Y. and K.M. Fromm, 'Coordination polymer networks with O-and N-donors: what they are, why and how they are made', Coordination chemistry reviews, 250(15): p. 2127-2157 (2006) [41] Ferey, G., et al., 'A chromium terephthalate-based solid with unusually large pore volumes and surface area', Science, 309(5743): p. 2040-2042 (2005) [42] Benjamin, J., 'Mechanical alloying', Scientific American, 234(5): p. 40-48 (1976) [43] Wong, C., et al., 'Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate', Applied Physics A, 117(2): p. 687-692 (2014) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4505 | - |
dc.description.abstract | 表面電漿共振(SPR)是一種即時且非標定的檢測技術,因為其對金屬表面折射率之變化十分敏感,因此於許多領域如疾病診斷、環境監控與食品安全皆有極大的發展潛力。然而,此種檢測技術並不適合用於分子鑑定上。而表面增強拉曼散射(SERS)則是一種對分子鑑定有高度專一性的檢測技術。當結合SPR與SERS時,則可以同時作定性與定量檢測。藉由單一製程即可應用於兩種檢測技術,不但可降低成本,也能增加檢測之方便性並創造更大的應用潛力。
本研究利用奈米壓印(Nanoimprinting)技術與電子束微影技術製作之矽母模,將奈米結構轉印於高分子COP膜上,可達到快速且低成本的需求。接著分別利用改變結構設計與斜向蒸鍍之方法,製作了兩種可同時作SPR與SERS檢測之生物晶片,其分別為奈米金屬狹縫孔洞複合結構與斜向蒸鍍奈米金屬狹縫結構。 奈米金屬狹縫孔洞複合結構藉由於狹縫結構加入孔洞結構之方式,增加表面拉曼熱點的數量,以提升SERS檢測之效果,並同時保留SPR檢測之特性。本研究除了確認孔洞結構會造成拉曼強度之提升,也意外發現孔洞結構於某些排列與週期下,可以提高表面靈敏度,使SPR檢測之效果同時達到提升。 斜向蒸鍍奈米金屬狹縫結構藉由斜向蒸鍍技術(Oblique Angle Deposition),於狹縫結構上鍍上粗糙之金膜以提供大量的拉曼熱點,使SERS檢測效果大幅提升,以與狹縫水平之鍍膜角度與240nm之鍍膜厚度,可以得到最佳之SERS檢測效果,並可同時利用穿透光譜之共振波谷作SPR檢測。因斜向蒸鍍奈米金屬狹縫結構具有極佳之SERS檢測效果,本研究進一步應用此結構於農藥陶斯松與有機揮發氣體丙酮、乙醇之定性檢測上,證實此結構確實具有量測並分辨不同生物分子之能力。 | zh_TW |
dc.description.abstract | Surface Plasmon Resonance (SPR) sensing is a real-time and label-free detection technique which is sensitive to the changes of refraction index on the metal surface. However, SPR is not suitable for molecular identification. On the other hand, Surface-Enhanced Raman Scattering (SERS) is a highly specific technique to identify molecules. By combining both SPR and SERS, quantification and qualification analysis can be accomplished on single biosensor.
In this study, Nanoimprinting technique was used to transfer nanostructures on COP plastic substrate. By changing the design of structures and using the oblique angle deposition technique, we made two kinds of dual SPR-SERS plasmonic sensors. Gold nanoslit structures are used for SPR sensing in our previous study. By adding nanohole with specific arrangement and quantities to the nanoslit structures, SERS effect can be enhanced due to the increase of Raman hot spots, and SPR effect can be remained and be enhanced. Nanoslit structures with rough metal surfaces were made by oblique angle deposition. Rough metal surfaces can produce many raman hot spots and make SERS effect strongly enhanced. The highest enhancement is achieved by the situation that deposition direction is horizontal to the slit direction and optimized deposition thicknessis240nm. Meanwhile, SPR detection can also be done by observing the shift of resonant dip. Further, Raman detection of chlorpyrifos, acetone gas and ethanol gas is demonstrated. | en |
dc.description.provenance | Made available in DSpace on 2021-05-14T17:42:48Z (GMT). No. of bitstreams: 1 ntu-104-R02522705-1.pdf: 6815925 bytes, checksum: c8f8c65784bdcc04551fa72ddb59c848 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 致謝 I
摘要 III ABSTRACT IV 目錄 V 圖目錄 VIII 第一章 導論 1 1.1前言 1 1.2奈米結構製作技術 1 1.3奈米金屬結構之光學性質 2 1.4奈米金屬結構應用於生物檢測 3 1.5研究方向與目的 3 1.6論文架構 4 第二章 文獻回顧 7 2.1 奈米壓印技術 7 2.2 表面電漿子共振 8 2.2.1 表面電漿共振原理 8 2.2.2 表面電漿之激發 13 2.2.3 奈米金屬狹縫表面電漿激發與共振模態 14 2.2.4 奈米金屬狹縫之Fano共振訊號模態 17 2.2.5 表面電漿共振應用於生物檢測 17 2.3 拉曼光譜學 19 2.3.1 拉曼散射之歷史 19 2.3.2 拉曼散射之原理 20 2.3.3 表面增強拉曼散射之研究發展 24 2.3.4 表面增強拉曼散射之原理 24 第三章 實驗設置與實驗方法 39 3.1 奈米結構矽母模製程 39 3.1.1 電子束微影技術 39 3.1.2 反應式離子蝕刻技術 40 3.1.3 奈米結構母模製程步驟 41 3.2奈米壓印製程 42 3.2.1 奈米壓印設備 43 3.2.2 高分子塑膠膜 44 3.2.3 壓印製程步驟 44 3.3 鍍膜設備 45 3.3.1熱蒸鍍系統 45 3.3.2直流式真空濺鍍系統 45 3.3.3原子層沉積系統 46 3.4 量測儀器 46 3.4.1 穿透光譜量測系統 46 3.4.2 拉曼光譜量測系統 47 3.4.3 場發射式電子顯微鏡 47 3.4.4 原子力顯微鏡 48 第四章 雙層奈米金屬狹縫孔洞複合結構開發與應用 57 4.1雙層奈米金屬狹縫孔洞複合結構 57 4.1.1金屬材料選擇 57 4.1.2雙層金屬結構 58 4.1.3狹縫孔洞複合結構 58 4.2表面增強拉曼散射光譜 59 4.2.1拉曼標靶選擇與修飾 59 4.2.2拉曼量測系統參數設定 60 4.2.3拉曼光譜分析 61 4.3表面電漿共振量測與靈敏度比較 62 4.3.1穿透光譜分析 62 4.3.2表面靈敏度比較 63 4.3.3表面靈敏度差異探討 64 4.4本章結論 64 第五章 斜向蒸鍍奈米金屬狹縫之開發與應用 79 5.1斜向蒸鍍奈米金屬狹縫結構 79 5.1.1斜向蒸鍍技術 79 5.1.2蒸鍍角度與方向 80 5.1.3鍍膜厚度之選擇 81 5.2表面增強拉曼散射與表面電漿共振量測 82 5.2.1拉曼增強效果分析 82 5.2.2穿透光譜分析 83 5.3表面增強拉曼散射應用於農藥與有機氣體檢測 83 5.3.1農藥拉曼檢測文獻 83 5.3.2農藥拉曼檢測 84 5.3.3有機氣體拉曼檢測文獻 84 5.3.4金屬有機骨架 85 5.3.5濕式奈米球磨法 86 5.3.6有機揮發氣體拉曼檢測 87 5.4本章結論 88 第六章 結論與未來研究方向 104 6.1 研究成果與結論 104 6.1.1 奈米壓印製程 104 6.1.2 雙層奈米金屬狹縫孔洞複合結構 104 6.1.3 斜向蒸鍍奈米金屬狹縫結構 104 6.1.4 農藥與有機揮發氣體檢測 105 6.2 未來研究方向 105 參考文獻 107 | |
dc.language.iso | zh-TW | |
dc.title | 表面電漿共振及表面增強拉曼散射雙重檢測感測器之開發與應用 | zh_TW |
dc.title | Development and Application of Dual SPR-SERS Plasmonic Sensors | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 魏培坤(Pei-Kuen Wei),劉士榮(Shi-Jung Liu) | |
dc.subject.keyword | 表面電漿共振,表面增強拉曼散射,奈米壓印技術,斜向蒸鍍技術, | zh_TW |
dc.subject.keyword | Surface Plasmon Resonance,Surface Enhanced Raman Scattering,Nanoimpring technique,Oblique angle deposition technique, | en |
dc.relation.page | 111 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2015-08-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf | 6.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。