Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45015
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文進
dc.contributor.authorChen-Chu Suen
dc.contributor.author蘇承祖zh_TW
dc.date.accessioned2021-06-15T04:01:24Z-
dc.date.available2010-03-10
dc.date.copyright2010-03-10
dc.date.issued2010
dc.date.submitted2010-02-22
dc.identifier.citation[1] Daniel J. Kleitman. The crossing number of K5,n. J. Combinatorial Theory, 9:315–
323, 1970.
[2] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J. Algebraic
Discrete Methods, 4(3):312–316, 1983.
[3] Ken-ichi Kawarabayashi and Bruce Reed. Computing crossing number in linear
time. In STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, pages 382–390. ACM, 2007.
[4] Shengjun Pan and R. Bruce Richter. The crossing number of K11 is 100. J. Graph
Theory, 56(2):128–134, 2007.
[5] D. R. Woodall. Cyclic-order graphs and Zarankiewicz’s crossing-number conjecture.
J. Graph Theory, 17(6):657–671, 1993.
[6] Alice M. Dean and R. Bruce Richter. The crossing number of C4 × C4. J. Graph
Theory, 19(1):125–129, 1995.
[7] Jay Adamsson and R. Bruce Richter. Arrangements, circular arrangements and the
crossing number of C7 × Cn. J. Combin. Theory Ser. B, 90(1):21–39, 2004.
[8] Yuanqiu Huang and Tinglei Zhao. The crossing number of K1,4,n. Discrete Math.,
308(9):1634–1638, 2008.
[9] Kouhei Asano. The crossing number of K1,3,n andK2,3,n. J. Graph Theory, 10(1):1–
8, 1986.
[10] Yuanqiu Huang and Mei Hanfei. The crossing number of K1,5,n. International
J.Math. Combin., 1(1):33–44, 2007.
[11] Yuan Qiu Huang and Ting Lei Zhao. On the crossing number of the complete tripartite
K1,6,n. Acta Math. Appl. Sin., 29(6):1046–1053, 2006.
[12] Yuanqiu Huang and Tinglei Zhao. On the crossing number of the complete tripartite
graph K1,8,n. Acta Math. Sci. Ser. A Chin. Ed., 26(7):1115–1122, 2006.
[13] Jing Wang and Yuan Qiu Huang. Crossing number of the complete tripartite graph
K1,10,n. Appl. Math. J. Chinese Univ. Ser. A, 23(3):349–356, 2008.
[14] Pak Tung Ho. The crossing number of K1,m,n. Discrete Math., 308(24):5996–6002,
2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45015-
dc.description.abstract交叉數是一個圖,在平面上所有的畫法中,可以畫出最小的交叉數。在這篇論
文,根據Kleitman證明完全二分圖的結果,我們證明了對於所有的n, K2,4,n這個
完全三分圖的交叉數。最後,我們提出了關於K2,m,n交叉數的猜想。
zh_TW
dc.description.abstractThe crossing Number $cr(G)$ of a graph $G$ is the smallest crossing number among all drawings of $G$ in the plane.
In this paper, we determine the crossing number of the tripartite graph $K_{2,4,n}$ for any integer $n$. Our proof depends on Kleitman's results for the complete bipartite graphs.
At last, we propose a conjecture of the crossing number of $K_{2,m,n}$.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:01:24Z (GMT). No. of bitstreams: 1
ntu-99-R96922077-1.pdf: 256195 bytes, checksum: c335352ca7d4c2a50893b733ecdcc4d5 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAcknowledgement i
Chinese Abstract ii
Abstract iii
List of Figures v
1 Introduction 1
2 Notation 3
3 Proof of The Crossing Number of K2,4,n
3.1 Some Lemmas . . . . . . . . . . . . 4
3.2 The Crossing Number of K2,4,n . . . 6
4 Conclusion 13
References 14
dc.language.isoen
dc.subject圖zh_TW
dc.subject交叉數zh_TW
dc.subject完全二分圖zh_TW
dc.subject完全三分圖zh_TW
dc.subjectNP完備zh_TW
dc.subjectcomplete tripartite graphen
dc.subjectCrossing numberen
dc.subjectNP-completeen
dc.subjectgraphen
dc.subjectcomplete bipartite graphen
dc.titleK2,4,n之交叉數zh_TW
dc.titleThe Crossing Number of K2,4,nen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊良,呂學一
dc.subject.keyword交叉數,圖,完全二分圖,完全三分圖,NP完備,zh_TW
dc.subject.keywordCrossing number,graph,complete bipartite graph,complete tripartite graph,NP-complete,en
dc.relation.page15
dc.rights.note有償授權
dc.date.accepted2010-02-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
250.19 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved