請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45006完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馮哲川(Zhe-Chuan Feng) | |
| dc.contributor.author | I-Hsiang Hung | en |
| dc.contributor.author | 洪奕翔 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:01:05Z | - |
| dc.date.available | 2010-03-10 | |
| dc.date.copyright | 2010-03-10 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-22 | |
| dc.identifier.citation | [1.1] W. Xie, D.C.Grillo, R.L.Gunshor, M. Kobayashi, H. Jeon, J. Ding, A.V. Nurmikko, G. C. Hua and N. Otsuka, Appl. Phys. Lett. 60, 1999 (1992).
[1.2] Dae-Kue Hwang, Soon-Hyung Kang, Jae-Hong Lim, Eun-Jeong Yang, Jin-Yong Oh, Jin-Ho Yang, and Seong-Ju Park, Appl. Phys. Lett. 86, 222101 (2005). [1.3] Koga K and Yamaguchi T, Prog. Crystal Growth Character 23, 127 (1991). [1.4] J. I. Pankove, E. A. Miller and J. E. Berkeyheiser, RCA Rev. 32, 283 (1971). [1.5] S. Nakamura et al., The Blue Laser Diodes (Spring, 1997), Chap.2. [1.6] R.W.G. Wyckoff, Crystal Structure , Volumes 1-4, (New York: Interscience Publishers) (1995). [1.7] S.Yoshida, S. Misawa, S. Gonda, “Epitaxial growth of GaN/AlN heterostructures,” J. Vac. Sci. Technol. B 1, 250 (1983). [1.8] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, J.Cryst. Growth. 89, 209 (1989). [1.9] S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991). [1.10] F. Bertram, T. Riemann, J. Christen, A. Kaschner, A. Hoffmann, C. Thomsen, K. Hiramatsu, T. Shibata and N. Sawaki, “Strain relaxation and strong impurity incorporation in epitaxial laterally overgrown GaN: Direct imaging of different growth domains by cathodoluminescence microscopy and micro-Raman spectroscopy,” Appl. Phys. Lett. 74, 359 (1999). [1.11] S. Nakamura, M. Senoh, S Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,” Appl. Phys. Lett.72, 2014 (1998). [1.12] X. Y. Sun, R. Bommena, D. Burckel, A. Frauenglass, M. N. Fairchild, and S. R. J. Brueck, G. A. Garrett and M. Wraback, S. D. Hersee, “Defect reduction mechanisms in the nanoheteroepitaxy of GaN on SiC,” J. Appl. Phys. 95, 1450 (2004). [1.13] E. Valcheva, T. Paskova, I. G. Ivanov, R. Yakimova, Q. Wahab, S. Savage, N. Nordell, and C. I. Harris, “B implantation in 6H--SiC: Lattice damage recovery and implant activation upon high-temperature annealing,” J. Vac. Sci. Technol. B 17, 1040 (1999). [1.14] T. Detchprohm, K. Hiramatsu, H. Amano and I. Akasaki, “Hydride vapor phase epitaxial growth of a high quality GaN film using a ZnO buffer layer,” Appl. Phys. Lett. 61, 2688 (1992). [1.15] F. Ponce, in: S. Nakamura, S.F. Chichibu (Eds.), Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, Taylor & Francis, p. 105 (2000). [1.16] J. Elsner, A. Th. Blumenau, T. Frauenheim, R. Jones, M. I. Heggie, Mater. Res. Soc. Symp. Proc. 595, w9.3.1 (2000). [1.17] S. D. Lester, F. A. Ponce, M. G. Craford, D. A. Seigerwald, Appl.Phys. Lett. 66, 1249 (1995). [1.18] X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, S. J. Rosner, Appl. Phys. Lett. 72, 692 (1998). [1.19] Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, S. Y. Wang, Appl. Phys. Lett. 72, 710 (1998). [1.20] N. Sharma, P. Thomas, D. Tricker, C. Humphreys, Appl. Phys. Lett. 77, 1274 (2000). [1.21] H. K. Cho, J. Y. Lee, C. S. Kim, G. M. Yang, N. Sharma, C. Humphreys, J. Cryst. Growth 231, 466 (2001). [1.22] H. K. Cho, J. Y. Lee, G. M. Yang and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett. 79, 215 (2001). [1.23] J. A. Chisholm and P. D. Bristowe, “Stacking fault energies in Si doped GaN: A first principles study,” Appl. Phys. Lett. 77, 534 (2000). [1.24] H. C. Yang, T. Y. Lin, and Y. F. Chen, “Nature of the 2.8-eV photoluminescence band in Si-doped GaN,” Phys. Rev. B 62, 12593 (2000). [1.25] G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, Appl. Phys. Lett. 68, 2541 (1996). [1.26] A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, “Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices,” J. Appl. Phys. 81, 6332(1997). [1.27] B. Monemar, and G. Pozina, Progress in Quantum Electronics 24, 239 (2000). [1.28] J.F. Nye, Physical Properties of Crystals, Oxford University Press, Oxford (1985). [1.29] F. Bernadini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997). [1.30] V. Fiorentini, F. Bernardini, F. D. Sala, A. D. Carlo, and P. Lugli, Phys. Rev. B 60, 8849 (1999). [1.31] O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Shaff, L.F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, J. Appl. Phys. 87, 334 (2000). [1.32] S. H. Park and S. L. Chuang, J. Appl. Phys. 87, 353 (2000). [1.33] Christian Wetzel, Shugo Nitta,Tetsuya Takeuchi, Shigeo Yamaguchi, H. Amano and I. Akasaki, J. Nitride Semicond. Res. 3, 31 (1998). [1.34] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “'S-shaped' temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370 (1998) [1.35] Y. Sun, Y. H. Cho, E. K. Suh, H. J. Lee, R. J. Choi, and Y. B. Hahn, “Carrier dynamics of high-efficiency green light emission in graded-indium-content InGaN/GaN quantum wells: An important role of effective carrier transfer,” Appl. Phys. Lett. 84, 49 (2004) [1.36] Y. C. Cheng, C. H. Tseng, C. Hsu, K. J. Ma, S. W. Feng, E. C. Lin, C. C. Yang, and J. I. Chyi, “Quantum dot formation with silicon doping in InGaN/GaN quantum well structures and its implications in radiative mechanisms,” Proc. SPIE Int. Soc. Opt. Eng. 4999, 518 (2003). [1.37] Y. H. Cho, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Excitation energy-dependent optical characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 3181 (1998). [1.38] Y. H. Cho, J. J. Song, S. Keller, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Influence of Si doping on characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1128 (1998). [1.39] S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16, 2204 (1998) . [1.40] J. Bai, T. Wang, and S. Sakai, “Photoluminescence study on InGaN/GaN quantum well structure grown on (112-bar 0) sapphire substrate,” Jpn. J. Appl. Phys., Part 140, 4445 (2001). [1.41] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69, 4188 (1996). [1.42] Hongbin Yu, H. Htoon, Alex deLozanne, C. K. Shih, P. A. Grudowski, R. D. Dupuis, K. Zeng, R. Mair, J. Y. Lin, and H. X. Jiang, “Dynamics of localized excitons in InGaN/GaN quantum wells,” J. Vac. Sci. Technol. B 16, 2215 (1998). [1.43] K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, Appl. Phys. Lett. 85, 401 (2004). [1.44] K. P. O’Donnell, R. W. Martin, and P. G. Middleton, Phys. Rev. Lett. 82, 237 (1999). [1.45] L. E. Brus, J. Chem. Phys. 80, 4403 (1984). [1.46] L. E. Brus, J. Chem. Phys. 90, 2555 (1986). [1.47] Y. Wang, and Norman Herron, Phys. Rev. B 42, 7243 (1990). [1.48] Y. Narugawa, Y. Kawakami, M. Funato, S. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997). [1.49] Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee and J. I. Chyi, Appl. Phys. Lett. 77, 2988 (2000). [1.50] K. Tachibana, T. Someya, and Y. Arakawa, Appl. Phys. Lett. 74, 383 (1999). [1.51] J. Tersoff, Phys. Rev. Lett. 81, 3183 (1998). [1.52] R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl. Phys. Lett. 70, 1089 (1997). [1.53] I. H. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996). [1.54] M. K. Behbehani, E. L. Piner, S. X. Liu, N. A. El-Masry, and S. M. Bedair, Appl. Phys. Lett. 75. 2002 (1998). [1.55] M. D. McCluskey, L. T. Romano, B. S. Krusor, D. P. Bour, N. M. Johnson, and S. Brennan, Appl. Phys. Lett. 72, 1730 (1999). [1.56] K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, Robert F. Davis, H. Tsuda, W. Taki, N. Juwano, and K. Oki, MRS Internet J. Nitride Semicond. Res. 2, 6 (1997). [1.57] M. Hao, H. Ishikawa, T. Egawa, C. L. Shao, and T. Jimbo, Appl. Phys. Lett., 82, 4702 (2003). [1.58] N. Grandjean, J. Massies, S. Dalmasso, P. Vennéguès, L. Siozade, and L. Hirsch, Appl. Phys. Lett. 74, 3616 (1999). [1.59] Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997). [1.60] Koichi Tachibana, Takako Someya, Yasuhiko Arakawa, Ralph Werner and Alfred Forchel, Appl. Phys. Lett. 75, 2605 (1999). [1.61] Hideki Hirayama, Satoru Tanaka, Peter Ramvall, and Yoshinobu Aoyagi, Appl. Phys. Lett. 72, 1736 (1998). [1.62] Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997). [1.63] S. Chichibu, K. Wada, and S. Nakamura, Appl. Phys. Lett. 71, 2346 (1997). [1.64] A. Vertikov, A. V. Nurmikko, K. Doverspike, G. Bulman, and J. Edmond, Appl. Phys. Lett. 73, 493 (1998). [1.65] J. Kim, K. Samiee, J. O. White, J.-M. Myoung, and K. Kim, Appl. Phys. Lett. 80, 989 (2002). [1.66] R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl. Phys. Lett. 70, 1089 (1997). [1.67] Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997). [1.68] K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, Appl. Phys. Lett. 76, 3212 (2000). [1.69] O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, Appl. Phys. Lett. 76, 2361 (2000). [1.70] Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, Phys. Rev. B 59, 10283 (1999). [1.71] N. M. Johnson, A. V. Neurmikko, and S. P. DenBaars, Phys. Today 53, 31 (2001). [2.1] J.S. Park, Z.J. Reitmeier, R.F. Davis. Phys. Stat. Sol. (c) 2, 2166 (2005) [2.2] H. Sato, H. Takahashi, A. Watanabe, and H. Ota. Appl. Phys. Lett. 68, 3617 (1996). [2.3] E.D. Bourrett-Courchesne, Kin-Man Yu, S.J.C. Irvine, A. Stafford, S.A. Rushworth, L.M. Smith, R. Kanjolia. J. of Crys. Gr. 221, 246 (2000). [2.4] B. Freitag,S. Kujawa,P.M. Mul,J. Ringnalda_,P.C. Tiemeijer, Ultramicroscopy 102, 209–214 (2005). [2.5] B. Fultz and J. Howe: Transmission Electron Microscopy and Diffractometry of Materials, Springer, Germany, (2001). [2.6] J. Wagner, Phys. Rev. B4, 2002 (1984). [2.7] Joseph H. Simmons and Kelly S. Potter, “Optical Materials”, San Diego, Academic Press, (2000). [2.8] H. C. Yang, P. F. Kuo, T. Y. Lin, Y. F. Chen, K. H. Chen, L. C. Chen, and Jen-Inn Chyi, Appl. Phys. Lett. 76, 3712(2000). [2.9] B. Monemar, Phys. Rev. B 8, 1051 (1973). [2.10] T. Akasaka, S. Ando, T. Nishida, H. Saito, and N. Kobayashi, Appl. Phys. Lett. 79, 1414 (2001). [2.11] PCI-Board for Time-Correlated Single Photon Counting:User’s Manual and Technical Data. [2.12] Department of Physics National Taiwan University, Studies of Optical Properties of II-VI Core-shell Quantum Dots, C. H. Wang. [3.1] G. Wetzel, T. Takeuchi, S. Yamagachi, H. Katoh, H. Amano, and I.Akasaki, Appl. Phys. Lett. 73, 1994 (1998). [3.2] L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei, and A. Zunger, Appl. Phys. Lett. 74, 1842 (1999). [3.4] X. Li, P. W. Bohn, J. Kim, J. O. White, and J. J. Coleman, Appl. Phys. Lett. 76, 3031 (2000). [3.5] J. Elsner, R. Jones, M. I. Heggie, P. K. Sitch, M. Haugk, Th. Frauenheim, S. Oberg, and P. R. Briddon, Phys. Rev. B 58, 12571 (1998). [3.6] F. A. Ponce, D. P. Bour, W. Gotz, and P. J. Wright, Appl. Phys. Lett. 68, 57 (1996). [3.7] T. Wang, P. J. Parbrook, W. H. Fan, and A. M. Fox, Appl. Phys. Lett. 84, 5159 (2004). [3.8] H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, and R. H. Wu, Appl. Phys. Lett. 84, 5100 (2004). [3.9] D. Bimberg, M. Sondergeld, and E. Grobe, Phys. Rev. B, 4, 3451 (1971). [3.10] M. E. White, K. P. O’Donnell, R. W. Martin, S. Pereira, C. J. Deatcher, and I. M. Watson, Mater. Sci. Eng. B 93, 147 (2002). [3.11] C. Gourdon and P. Lavallard, Phys. Status Solidi B 153, 641 (1989). [3.12] Cheng-Yen Chen, Dong-Ming Yeh, Yen-Cheng Lu, and C. C. Yang, Appl. Phys. Lett. 89, 203113 (2006). [3.13] Tetsuya Akasaka,a_ Hideki Gotoh, Yasuyuki Kobayashi, Hidetoshi Nakano, and Toshiki Makimoto, Appl. Phys. Lett. 89, 101110 (2006). [3.14] T. Onuma, S. Keller, S. P. DenBaars, J. S. Speck, S. Nakamura, and U. K. Mishra, T. Sota, S. F. Chichibua, Appl. Phys. Lett. 88, 111912 (2006). [3.15] Seiji Nagahara,a_ Munetaka Arita, and Yasuhiko Arakawa, Appl. Phys. Lett. 88, 083101 (2006). [4.1] Zhong, G.H., J. Lwang, and Z. Zeng, Electronic and magnetic structures of 4f in Ga1-xGdxN. Journal of Physics-Condensed Matter, 2008. 20(29): p. 295221- 295227. [4.2] Steckl, A.J., et al., Rare-earth-doped GaN: Growth, properties, and fabrication of electroluminescent devices. IEEE Journal of Selected Topics in Quantum Electronics, 2002. 8(4): p. 749-766. [4.3] Steckl, A.J., et al., Multiple color capability from rare earth-doped gallium nitride. Materials Science and Engineering B, 2001. 81(1-3): p. 97-101. [4.4] Steckl, A.J., et al., Rare-earth-doped GaN: Growth, properties, and fabrication of electroluminescent devices. IEEE Journal of Selected Topics in Quantum Electronics, 2002. 8(4): p. 749-766. [4.5] Steckl, A.J., et al., Multiple color capability from rare earth-doped gallium nitride. Materials Science and Engineering B, 2001. 81(1-3): p. 97-101. [4.6] Kenyon, A.J., Recent developments in rare-earth doped materials for optoelectronics. Progress in Quantum Electronics, 2002. 26(4-5): p. 225-284. [4.7] Birkhahn, R., et al. Growth and morphology of Er-doped GaN on sapphire and hydride vapor phase epitaxy substrates. 1999: AVS. [4.8] J. Wagner, Phys. Rev. B4, 2002 (1984). [4.9] Joseph H. Simmons and Kelly S. Potter, “Optical Materials”, San Diego, Academic Press, (2000). [4.10] Reshchikov, M.A. and H. Morkoc. Luminescence from defects in GaN. 2006. [4.11] Grimmeiss, H.G. and B. Monemar, Low-Temperature Luminescence of GaN. Journal of Applied Physics, 1970. 41(10): p. 4054-4058. [4.12] Lipinska, Z., et al. Photoluminescence and electron paramagnetic resonance studies of bulk GaN doped with gadolinium. 2006. [4.13] Dieke, G.H. and L. Leopold, ABSORPTION, FLUORESCENCE, AND MAGNETIC PROPERTIES OF GADOLINIUM CHLORIDE (GDCL3.6H2O). Journal of the Optical Society of America, 1957. 47(10): p. 944-954. [4.14] Reshchikov, M.A. and H. Morkoc, Luminescence properties of defects in GaN. Journal of Applied Physics, 2005. 97(6): p. 95. [4.15] Wegh, R.T., et al. Extending Dieke's diagram. 2000: Elsevier Science Bv. [5.1] Ohno, H., Making nonmagnetic semiconductors ferromagnetic. Science, 1998. 281: p. 951-956. [5.2] Liu, C., F. Yun, and H. Morkoc, Ferromagnetism of ZnO and GaN: A review. Journal of Materials Science-Materials in Electronics, 2005. 16(9): p. 555-597. [5.3] P. Y. Yu and M. Cardona. “Fundamentals of Semiconductors”, Springer-Verlag (1996). [5.4] T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide, and K. Manabe, J. Appl. Phys. 75, 1098 (1994). [5.5] T. Azuhata, T. Sota, K. Suzuki, and S. Nakamura, J. Phys.: Condens. Matter 7, L129 (1995). [5.6] V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, A. P. Mirgorodsky and R. A. Evaretov., Physical Review B 58(19), 12899 (1998). [5.7] P. M. Platzman, P. A. Wolf, ‘Waves and interactions in solid state plasmas’, Academic Press, New York, (1973). [5.8] V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, R. A. Evarestov, Phys. Rev. B 58, 12899 (1998). [5.9] R. Trommer, A. K. Ramds, in ‘Physics of Semiconductors 1978’, ed. B. L. H. Wilson, Ins. Phys. London, London (1979). [5.10] C. F. Klingshirn, ‘Semiconductor Optics’, Springer, Berlin (1997). [5.11] V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, R. A. Evarestov, Phys. Rev. B 58, 12899 (1998). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45006 | - |
| dc.description.abstract | 本論文主要分為兩大部分:第一部分是分析氮化銦鎵/氮化鎵多重量子井的光學與材料結構特性,透過拉曼光譜、X光繞射、光激螢光光譜、光激螢光激發光譜以及時間鑑別光激螢光頻譜,來研究其材料結構與光學特性;第二部份為分析氮化釓鎵和氮化鉻鎵薄膜的光學特性研究。
在第一部份裡,我們研究在氮化銦鎵/氮化鎵多重量子井中對最靠近頂端的兩層位障寬度做變化 (由25埃、40埃、75埃、150埃和300埃) 之樣品的光學及材料結構特性。首先由X 光繞射實驗,我們可以得知樣品的量子井厚度以及量子井中的銦含量。接著,經由光激螢光光譜、光激螢光激發光譜以及時間鑑別光激螢光頻譜,我們可以得到位障寬度較薄的發光效率較高且衰退時間較小。實驗的結果對於將來光電元件發光效率的增加可提供一個重要的貢獻。 在第二部份中,我們探討有機金屬氣相磊晶系統成長不同濃度的稀有元素(釓和鉻)參雜在氮化鎵上形成氮化釓鎵和氮化鉻鎵薄膜,稱之為稀磁性半導體。稀磁性半導體獨特的優點是能顯示出材料的鐵磁性可共存在固體電子與光電子學間。在此,我們利用拉曼光譜和光激螢光光譜初步了解氮化釓鎵和氮化鉻鎵薄膜的光學特性。 | zh_TW |
| dc.description.abstract | This thesis mainly divides into two parts: the first part is analyzed the optical properties and material characteristics of InGaN/GaN multi-quantum wells LED structure. By the Raman scattering, X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL), photoluminescence excitation (PLE), time-resolved photoluminescence (TRPL) experiments were carried out to study the optical and material structure properties; the second part is studied on the optical properties of GaGdN and GaCrN thin films.
(1) InGaN/GaN MQW LEDs with different Barrier widths structures: We studied the optical and material structure properties of the blue emission MQW LED samples with different barrier widths (25 Å, 40 Å, 75 Å, 150 Å and 300 Å) near the top layer. First, from the XRD experimental results, we can determine the period thickness and indium composition of the samples. From the Photoluminescence, photoluminescence excitation and time-resolved photoluminescence experiments, we can find that the luminescence efficiency is higher and the decay time is small on the sample with thinner barrier widths. The experimental results shown here can serve as important clue for the enhancement of the luminescence efficiency in the future optoelectronic devices. (2) GaGdN and GaCrN thin films by MOCVD: Second, we discussed the metal elements (gadolinium and chromium) doped on GaN grown by metal organic chemical vapor deposition (MOCVD) with different concentration. GaGdN and GaCrN thin films are dilute magnetic semiconductors (DMS). The unique advantage of DMS is that they can exhibit ferromagnetism in materials compatible with those used for solid state electronics and optoelectronics. Here, we studied the optical characteristics on GaGdN and GaCrN thin films by Raman scattering and photoluminescence spectra. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:01:05Z (GMT). No. of bitstreams: 1 ntu-99-R96941084-1.pdf: 4801586 bytes, checksum: 099fbb84f8a84b8422f7511d951e0662 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書........................................................................................I
致謝..............................................................................................................II 摘要.............................................................................................................III Abstract.......................................................................................................IV Content........................................................................................................VI Lists of Figures.............................................................................................X Lists of Tables..........................................................................................XVI Chapter 1 Introduction…………………………………………………...1 1.1 Applications of III-N Materials Based on Heterostructures……...1 1.2 Review of Group-III-N Materials Growth……………………….2 1.2.1 Lattice Structure of the Nitride Semiconductors….............2 1.2.2 Substrates for Nitride Compound………………………....5 1.2.3 Defect in GaN…………………………………………......6 1.3 Growth of InGaN and InGaN/GaN Heterostructures………….....8 1.3.1 Strain Effect…………………………………………….....8 1.3.2 Spontaneous Polarization and Strain-induced Piezoelectric Field……………………………………………………...10 1.3.3 Carrier localization and Quantum-Confined Stark Effect in InGaN/GaN QWs………………………………………...14 1.3.4 Indium Aggregation and Quantum Dot-like Structure…..16 1.4 Our Research Topics…………………………………………….19 References……………………………………………………………20 Chapter 2 Experimental Details...............................................................29 2.1 Photoluminescence (PL)……………………………………..….29 2.1.1 PL Experimental Setup……………………………….......33 2.2 Transmission electron microscope (TEM)……………....……….34 2.3 High resolution X-ray diffraction (XRD)………………………..35 2.4 Raman scattering ……………………………………….....…….38 2.5 Photoluminescence excitation (PLE)………………………....….39 2.6 Time-Resolved Photoluminescence: (TRPL)…………………....41 2.6.1 Time-Resolved Photoluminescence principium……….…41 2.6.2 TRPL Experimental Setup…………………………..……45 References………………………………………………………...…47 Chapter 3 InGaN/GaN Multi-quantum Wells Structures Light Emitting Diode with Different Barrier Widths ……………………..…49 3.1 Sample Growth……………………………………………..........49 3.2. High-resolution X-ray Diffraction Measurement…………….....49 3.3 Optical Measurement and analysis…………………………....…53 3.3.1 PL Experimental Results………………………….………53 3.3.2 Photoluminescence Excitation Experimental Results….…66 3.3.3 TRPL Experimental Results………………………………68 3.4 Summary ................................................................................…...80 References……………………………………………………...……82 Chapter 4 Optical, Structural Properties and Experimental Procedures of GaGdN grown by MOCVD…………………………….…………….84 4.1 Introduction ………………………………………….………….84 4.2 Experiment……………………………………………....……….86 4.3 Optical Measurement and analysis………………………...…….89 4.3.1 Raman scattering…………………………………….....…89 4.3.2 PL Experimental Results……………………………….…90 4.4 Summary………………………………………………………....95 References…………………………………………………………...96 Chapter 5 Optical, Structural Properties and Experimental Procedures of GaCrN grown by MOCVD…………………………….98 5.1 Introduction ………………………………………………....98 5.2 Experiment……………………………………………………..101 5.2.1 Sample Preparation and Structure……………………..101 5.2.2 Experimental setup………………………………...…….102 5.3 Results and discussion………………………………….….108 5.4 Summary………………………………………………..…….…115 References……………………………………………………..……116 Chapter 6 Conclusion………………………………………………118 Appendix………………………………………………………………120 Appendix I. InGaN/GaN MQW G429 figures…………………120 Appendix II. InGaN/GaN MQW G978 figures……………….121 Appendix III. InGaN/GaN/ZnO figures…………………...122 | |
| dc.language.iso | en | |
| dc.subject | 氮化鉻鎵 | zh_TW |
| dc.subject | 氮化銦鎵/氮化鎵多重量子井 | zh_TW |
| dc.subject | 氮化釓鎵 | zh_TW |
| dc.subject | InGaN/GaN multi-quantum wells | en |
| dc.subject | GaCrN | en |
| dc.subject | GaGdN | en |
| dc.title | 不同結構之氮化銦鎵/氮化鎵量子井發光二極體,氮化釓鎵和氮化鉻鎵薄膜之光學與材料特性研究 | zh_TW |
| dc.title | Optical and Material Studies of InGaN/GaN Multi-Quantum Wells Light Emitting Diodes and Thin Films of GaGdN and GaCrN | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 駱芳鈺(Fang-Yu Luo),黎欣宜(Nola Li) | |
| dc.subject.keyword | 氮化銦鎵/氮化鎵多重量子井,氮化釓鎵,氮化鉻鎵, | zh_TW |
| dc.subject.keyword | InGaN/GaN multi-quantum wells,GaGdN,GaCrN, | en |
| dc.relation.page | 123 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-02-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
