請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44959完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝德宗(Der-Tzon Hsieh) | |
| dc.contributor.author | Yu-Cheng Chu | en |
| dc.contributor.author | 祝宇正 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:59:31Z | - |
| dc.date.available | 2015-04-02 | |
| dc.date.copyright | 2010-04-02 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-03-31 | |
| dc.identifier.citation | 林敬生 (1993),「臺灣地區銀行市場的演進」,自由中國之工業,79卷3期,31–48頁。
楊雅惠 (1993),「總體經濟價格變數對臺灣地區銀行之營運資金的影響–共整合與誤差修正模型之應用」,碩士論文,國立中興大學企業管理學系研究所。 李賢 (1997),「我國新商業銀行經營競爭能力與行銷策略之研究」,碩士論文,大葉大學事業經營研究所。 彭正浩 (1998),「臺灣銀行業多角化與其績效之研究」,碩士論文,國立臺灣大學經濟學研究所。 蘇點宇 (1999),「臺灣地區銀行業務演變趨勢之分析」,碩士論文,國立臺灣大學財務金融研究所。 林士傑 (2001),「臺灣地區銀行業從事非傳統銀行業務之實證研究」,碩士論文,大葉大學事業經營研究所。 林筱倫 (2002),「銀行業非傳統業務之決定因素」,碩士論文,國立高雄第一科技大學金融營運系。 楊宜哲 (2002),「臺灣地區外商銀行經營規模與獲利能力之決定因子」,碩士論文,靜宜大學企業管理研究所。 許惠淇 (2005),「臺灣地區銀行業承作非傳統業務之經營績效評估」,碩士論文,淡江大學財務金融學系。 楊文敏 (2005),「中國信託商業銀行服務品質之研究-顧客滿意度的觀點」,碩士論文,南華大學管理科學研究所。 蕭絜心 (2007),「銀行非傳統業務與經營績效之關連性」,碩士論文,銘傳大學財務金融學系。 何俊毅 (2008),「臺灣二次金融改革政策工具應用之研究」,碩士論文,國立東華大學公共行政研究所。 吳淑真 (2008),「銀行多角化對財務績效的影響-以臺灣地區銀行業為例」,碩士論文,國立臺北大學企業管理學系。 張庭瑜 (2008),「銀行理財手續費收入決定因素之研究」,碩士論文,國立政治大學行政管理碩士學程。 Akaike, Hirotugu (1974), A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19 (6): 716–723. Albertazzi, U. and Gambacorta, L. (2009), Bank profitability and the business cycle, Journal of Financial Stability, 5 (4):393–409. Box, G.E.P., Jenkins, G.M. and Reinsel, G. C. (1994), Time Series Analysis, Forecasting and Control, 3rd ed. Prentice Hall, NJ: Englewood Cliffs. Burnham, K.P. and Anderson, D.R. (2002), Model Selection and Multimodel Inference: A Practical-Theoretic Approach, 2nd ed., Springer-Verlag. DeYoung, R. and Roland, K.P. (2001), Product Mix and Earnings Volatility at Commercial Banks: Evidence for a Degree of Total Leverage Model, Journal of Financial Intermediation, 10 (1):54–84. Dickey, D.A. and Fuller, W.A. (1979), Distributions of the Estimators For Autoregressive Time Series with a Unit Root, Journal of the American Statistical Association, 75:427–431. Dickey, D.A. and Fuller, W.A. (1981), Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root, Econometrica, 49:1057–1072. Diebold, F.X. and Mariano, R.S. (1995), Comparing predictive accuracy, Journal of Business and Economic Statistics, 13 (3):253–263. Elliott, G., Rothenberg, T.J. and Stock, J.H. (1996), Efficient Tests for an Autoregressive Unit Root, Econometrica, 64:813–836. Engle, R. and Granger, C.W.J. (1987), Cointegration and error correction: Representation, estimate, and testing, Econometrica, 55:251–276. Everitt, B.S. (2002), Cambridge Dictionary of Statistics, CUP. Fisher, Irving (1911), The Purchasing Power of Money, Publications of the American Statistical Association, 12:818–829. Granger, C.W.J. (1969), Investigating Causal Relations by Econometric Models and Cross-Spectral Methods, Econometrica, 37:424–438. Granger, C.W.J. and Newbold, P. (1977), Forecasting Economic Time Series, Orlando, FL: Academic Press. Greene, W.H. (2008), Econometric Analysis, 6th ed., Prentice Hall. Hamilton, J.D. (1995), Time Series Analysis, Princeton University Press. Hannan, E.J., and Quinn, B.G. (1979), The Determination of the Order of an Autoregression, Journal of the Royal Statistical Society, B, 41:190–195. Hogg, R.V., Joseph, W.M., and Allen, T.C. (2005), Introduction to Mathematical Statistics, 6th ed., Prentice Hall Press. Hunter, W.C. and Timme, S.G. (1995), Core deposits and physical capital: A reexamination of bank scale economics and efficiency with quasi-fixed inputs, Journal of Money, Credit, and Banking, 27:165–185. Johansen, S. (1988), Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and Control, 12:231–254. Johansen, S. and Juselius, K. (1990), Maximum Likelihood Estimation and Inference on Cointegration – with Applications to the Demand for Money, Oxford Bulletin of Economics and Statistics, 52 (2):169–210. Johansen, S. (1991), Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models, Econometrica, 59:1551–1580. Kahneman, Daniel and Tversky, Amos (1979), Prospect Theory: An Analysis of Decision under Risk, Econometrica, 47 (2):263–291. Kwiatkowski, D., Phillips, P.C.B., Schmidt, P. and Shin, Y. (1992), Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?, Journal of Econometrics, 54:159–178. Lepetit, L., Nys, E., Rous , P. and Tarazi, A. (2008), Bank income structure and risk: An empirical analysis of European banks, Journal of Banking & Finance, 32 (8):1452–1467 Morgan, W. A. (1939-1940), A Test for Significance of the Difference Between the Two Variances in a Sample From a Normal Bivariate Popu- lation, Biometrika, 31:13–19. Osterwald-Lenum, M. (1992), A Note with Quantiles of the Asymptotic Distribution of the Maximum Likelihood Cointegration Rank Test Statistics, Oxford Bulletin of Economics and Statistics, 55 (3):461–472. Phillips, P.C.B. and Perron, P. (1988), Testing for a unit root in time series regression, Biometrika, 75 (2):335–346. Rogers, K.E. (1998), Nontraditional activities and the efficiency of U.S. commercial banks, Journal of Banking and Finance, 22:467–482. Rogers, K.E. and Sinkey, J.F., Jr. (1999), An analysis of nontraditional activities at U.S. commercial banks, Review of Financial Economics, 8:25–39. Schwarz, G.E. (1978), Estimating the dimension of a model, Annals of Statistics, 6 (2):461–464. Stock, J.H. and Watson, M.W. (2007), Introduction to Econometrics, 2nd ed., AddisionWesley. Wackerly, D.D., Mendenhall, W., and Scheaffer, R.L. (2002), Mathematical Statistics with Applications, 6th ed., Duxbury Press. Zivot, E. and Andrews, D.W.K. (1992), Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis, Journal of Business & Economic Statistics, 10 (3):251–270. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44959 | - |
| dc.description.abstract | 金融自由化、國際化、多元化已是全球金融業不可抵擋的趨勢。近來政府為因應國人對多元化金融商品的需求,對於金融機構的管制日趨放鬆,國內銀行所經營的業務類型朝向多元化發展,所推出的金融商品與服務日新月異,手續費收入佔銀行業營收比逐年增加,此亦是未來之趨勢,因此找出顯著影響銀行業手續費收入之因素且瞭解其領先落後與因果關係為預測銀行業營收時之重要議題。
美商花旗銀行為臺灣地區於銀行業手續費收入表現最為突出的銀行之一,因此本研究選取美商花旗銀行作為代表銀行業之分析標的,由1996年1月至2009年7月之樣本資料,以Granger因果關係、向量自我迴歸模型、共整合檢定、與複迴歸模型進行實證分析,找出顯著影響銀行業手續費收入之因素,最後再以多種預測方法並配合檢定,找出可供銀行業預測手續費收入之模型。 實證結果指出,本研究所選取之變數包括中央銀行準備貨幣、證券金融公司資產總額、金融機構信託資金、美元10天買入匯率、棉花-利物浦棉花指數、M2餘額、商業本票初級市場1-30天利率、美國NASDAQ指數皆對花旗在臺分行手續費收入有顯著影響,顯示銀行業手續費收入與總體經濟因素密切相關。預測方法中,採Recursive forecast之預測值顯著準確於其他方法。於共整合檢定中,發現花旗在臺分行手續費收入與中央銀行庫存現金、金融機構信託資金、及金融保險受雇員工每人每月平均薪資皆具有共整合關係。 | zh_TW |
| dc.description.abstract | Financial liberalization, internationalization and diversification have become a trend in global financial industry. Government accelerates the footsteps of financial liberalization to release numerous financial restrictions gradually due to strong demand for various financial products and service in the country. Domestic banks also tend to diversify the business types and innovate new financial products and service to meet the demand. The proportion of fee income to total revenues in banks arose and would become more expansive continually. It is an important issue to find out the major factors which determine the fee income of banks.
The paper employs the data from Citibank N.A., Taiwan branch, as a benchmark to represent the bank industry due to fee income is one of most outstanding banks in Taiwan, and also employs some major macroeconomic factors from Jan. ’96 to Jul. ‘09 to be the explanatory variables. By Granger causality, vector autoregressive model, cointegration test, multiple regression analysis, and numerous testing methods, the paper constructs an econometric model to predict the fee income of banks. By empirical results, Central Bank Cash in Vaults, Total Asset of Securities Finance Companies, Trust Funds of Financial Institutions, USD 10 days Quotes (Buy), Cotton Liverpool Index, Money Supply (M2), Primary Market Rate of Commercial Paper (1-30 Days), and NASDAQ Index contributed significant to the fee income of Citibank N.A., Taiwan branch. In numerous forecasting methods, the results point out the Recursive forecast is a better forecast method. In cointegration test, the results show the fee income of Citibank N.A., Taiwan branch, cointegrate with Central Bank Cash in Vaults, Trust Funds of Financial Institutions, and Average Monthly Earnings Per Employee (Financial Industries). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:59:31Z (GMT). No. of bitstreams: 1 ntu-99-R97323037-1.pdf: 1532856 bytes, checksum: 9b5622ff815913f1bc803445db750b0c (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 論文口試委員審定書------------------------I
謝詞--------------------------------------II 中文摘要----------------------------------III 英文摘要----------------------------------IV 目錄--------------------------------------V 圖目錄------------------------------------VII 表目錄------------------------------------VIII 第一章 緒論-------------------------------1 1.1 研究背景與動機------------------------1 1.2 研究目的------------------------------6 1.3 本文架構------------------------------7 第二章 文獻回顧---------------------------8 2.1 臺灣銀行業發展沿革--------------------8 2.2 實證文獻回顧--------------------------13 第三章 實證模型的建立---------------------18 3.1 計量模型的介紹------------------------18 3.1.1 最適落後期數選取--------------------18 3.1.2 單根檢定----------------------------20 3.1.3 Granger因果關係---------------------25 3.1.4 向量自我迴歸模型--------------------26 3.1.5 共整合檢定--------------------------27 3.1.6 複迴歸分析--------------------------29 3.1.7 預測模型與檢定----------------------30 3.2 資料來源------------------------------33 3.3 資料處理------------------------------36 3.3.1 最適落後期數選取結果分析------------36 3.3.2 單根檢定結果分析--------------------37 3.3.3 相關係數分析------------------------41 第四章 實證結果分析-----------------------43 4.1 Granger因果關係結果分析---------------43 4.2 向量自我迴歸結果分析------------------45 4.3 共整合檢定結果分析--------------------48 4.4 複迴歸結果分析------------------------50 4.5 預測模型與檢定結果分析----------------55 第五章 結論與建議-------------------------58 5.1 結論----------------------------------58 5.2 建議----------------------------------60 參考文獻----------------------------------61 中文參考文獻------------------------------61 英文參考文獻------------------------------63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 預測 | zh_TW |
| dc.subject | 銀行手續費 | zh_TW |
| dc.subject | Granger因果關係 | zh_TW |
| dc.subject | 向量自我迴歸模型 | zh_TW |
| dc.subject | 共整合檢定 | zh_TW |
| dc.subject | Bank | en |
| dc.subject | Forecasting | en |
| dc.subject | Multiple regression analysis | en |
| dc.subject | Cointegration test | en |
| dc.subject | Vector autoregressive model | en |
| dc.subject | Granger causality | en |
| dc.subject | Fee | en |
| dc.title | 總體經濟因素對銀行業手續費收入影響-臺灣花旗銀行之實證研究 | zh_TW |
| dc.title | Impact of Macroeconomic Factors on Bank's Fee Income : Evidence from Citibank in Taiwan Branch | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 李顯峰(Hsien-Feng Lee) | |
| dc.contributor.oralexamcommittee | 林惠玲 | |
| dc.subject.keyword | 銀行手續費,Granger因果關係,向量自我迴歸模型,共整合檢定,預測, | zh_TW |
| dc.subject.keyword | Bank,Fee,Granger causality,Vector autoregressive model,Cointegration test,Multiple regression analysis,Forecasting, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-03-31 | |
| dc.contributor.author-college | 社會科學院 | zh_TW |
| dc.contributor.author-dept | 經濟學研究所 | zh_TW |
| 顯示於系所單位: | 經濟學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
