請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44943
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾于恆(Yu-Heng Tseng) | |
dc.contributor.author | Shou-Hung Chien | en |
dc.contributor.author | 簡碩宏 | zh_TW |
dc.date.accessioned | 2021-06-15T03:59:01Z | - |
dc.date.available | 2010-05-06 | |
dc.date.copyright | 2010-05-06 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-04-27 | |
dc.identifier.citation | Archer, C. L., M. Z. Jacobson, and F. L. Ludwig, The Santa Cruz Eddy part I: observation and statistics, Mon. Wea. Rev., 133, 767-782, 2005.
Archer, C. L., and M. Z. Jacobson, The Santa Cruz Eddy part II: mechanisms of formation, Mon. Wea. Rev., 133, 2387-2405, 2005. Atkinson, B. W., Meso-scale atmospheric circulations, 495 pp., Academic Press, 1981. Banta, R. M., Sea breeze shallow and deep on the California coast, Mon. Wea. Rev., 123, 3614-3622, 1995. Breaker, L. C. and C. N. K. Mooers, Oceanic variability off the central California coast, Prog. Oceanogr., 17, 61 – 135, 1986. Charney, J. G., On the scale of atmospheric motions, Geophys. Publ., 17(2), 1-17, 1948. Chao, S. Y. and P. T. Shaw, Nonhydrostatic aspects of coastal upwelling meanders and filaments off eastern ocean boundaries, Tellus , 54(A), 63-75, 2002. Cui, Z., M. Tjernstrom, and B. Grisogono, Idealized simulations of atmospheric coastal flow along the central coast of California, J. Apply. Meteor., 37, 1332-1363, 1997. Danielson E. W., J. Levin, and E. Abrams, Meteorology, 2nd ed., 558 pp., McGraw-Hill 2003. Dietrich, D. E., A. Mehra, R. L. Haney, M. J. Bowman, and Y. H. Tseng, Dissipation effects in North Atlantic Ocean modeling, Geophys. Res. Lett., 31, L05302, doi:10.1029/2003GL019015, 2004. Dorman, C. E., and C. D. Winant, The structure and variability of the marine atmosphere around the Santa Barbara channel, Mon. Wea. Rev., 128, 261–282, 2000. Hales, B., T. Takahashi and L. Bandstra, Atmospheric CO2 uptake by a coastal upwelling system, Glob. Biogeochem. Cycle, 19, GB1009 doi:10.1029/2004GB002295, 2005. Haurwitz B., Comments on the sea-breeze circulation, J. Meteor., 4(1), 1-8, 1947. Hellerman, S., and M. Rosenstein, Normal monthly wind stress over the world ocean with error estimates, J. Phys. Oceanogr., 13, 1093– 1104, 1983. Holton, J. R., An introduction to dynamic meteorology, 4th ed., 535 pp., Elsevier Academic Press, 2004. Huyer, A., Coastal upwelling in the California current system. Prog. Oceanogr., 12, 259 – 284, 1983. Jin, J., N. J. Schlegel, and N. L. Miller., Analysis of sea surface temperature boundary conditions using the weather research and forecasting model. Spring AGU Joint Assembly, Ft. Lauderdale, Florida, 30 May 2008, 2008. Johnstone, J. A. and T. E. Dawson, Climatic context and ecological implications of summer fog decline in the coast redwood region, Proc. Natl. Acad. Sci., 107, 4533-4538, 2010. Large, W. G. and S. Pond, Open ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11, 324-336, 1981. Lyons, W. A., The climatology and predictions of the Chicago lake breeze. J. Apply. Meteor., 11, 1259-1270, 1972. Miller, N. L. J. Jin, N. J. Schlegel, M. A. Snyder, T. O’Brien, L. C. Sloan, P. B. Duffy, H. Hidalgo, Kanamaru, M. Kanamitsu, K. Yoshimura, D. R. Cayan, An Analysis of Simulated California Climate using Multiple Dynamical and Statistical Techniques, CEC Report CEC-500-2009-017-F, 2009. National Aeronautics and Space Administration, Ocean motion and surface currents. (2010, March 28). Wind driven surface currents: Upwelling and downwelling background. Retrieved from http://oceanmotion.org/html/background/upwelling- and-downwelling.htm Oleson, K. W., Y. Dai, G. Bonan, M. Bosilovich, R. Dickinson, P. Dirmeyer, F. Hoffman, P. Houser, S. Levis, G.-Y. Niu, P. Thornton, M. Vertenstein, Z.-L. Yang, and X. Zeng, Technical description of the Community Land Model (CLM), NCAR Technical Note, NCAR/TN-461+STR, 174 pp., 2004. Richardson, L. F., Weather prediction by numerical process, Cambridge University Press, 236 pp., 1922. Schroeder, M. J., M. A. Fosberg, O. P. Cramer, and C. A. O’Dell, Marine air invasion of the Pacific coast: a problem analysis, Bull. Amer. Meteor. Soc., 48(11), 802-808, 1967. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huand, W. Wang and J. G. Powers, A description of the advanced research WRF version 3, NCAR Technical Note, NCAR/TN-475+STR, 113 pp., 2008. Smith, R. L., A comparison of the structure and variability of the flow field in three coastal upwelling regions: Oregon, Northwest Africa, and Peru in coastal upwelling, Coastal and Estuarine Sciences 1st ed. F.A. Richards editor, 107-118, 1981. Stewart, R. H., Introduction to physical oceanography, Dept. of Oceanography, Texas A & M University, 345 pp., 2008. Tseng, Y. H. and L. C. Breaker, Nonhydrostatic simulation of the regional circulation in the Monterey Bay area, J. Geophys. Res., 112, C12017, doi: 10.1029/2007JC004093, 2007. Tseng, Y.-H., D. E. Dietrich, and J. H. Ferziger, Regional circulation of the Monterey Bay region: Hydrostatic versus nonhydrostatic modeling, J. Geophys. Res., 101, C09015, doi:10.1029/2003JC002153, 2005. Tseng, Y.H. and J.H. Ferziger., Effects of coastal geometry and the formation of cyclonic/anti-cyclonic eddies on turbulent mixing in upwelling simulation, J. Turbul., 2, 014, 2001. Tseng, Y. H., and J. H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys., Vol. 192, 593– 623, 2003. Tseng, Y. H., and J. H. Ferziger, Large-eddy simulation of turbulent wavy boundary flow: Illustration of vortex dynamics, J. Turbulence, Vol. 5, 34, 2004. Vesecky, J. F., C. C. Teague, R. G. Onstott, J. M. Daida, P. Hansen, D. Fernandez, N. Schnepf, K. Fischer, Surface current response to land-sea breeze circulation in Monterey Bay, California as observed by a new multifrequency HF Radar, Oceans ’97.MTS/IEEE Conference Proceedings, 2, 1019-1024, doi:10.1109/OCEANS.1997.624130, 1997. Wilczak, J. M., W. D. Neff, D. Ruffieux, and J. Schmidt, Atmospheric and oceanic mesoscale flows in the Monterey Bay, California region. Preprints, Second Int. Conf. on Air–Sea Interaction and on Meteorology and Oceanography of the Coastal Zone, Lisbon, Portugal, Amer. Meteor. Soc., 196–197, 1994. Yoshimura, K. and M. Kanamitsu, Dynamical global downscaling of global reanalysis, Mon. Wea. Rev., 136, 2983-2998, 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44943 | - |
dc.description.abstract | 本文主要為利用一區域氣候系統模式針對美國加州蒙特瑞灣區域的海地氣交互作用進行模擬與調查。在本次模擬中特別針對現今各式之全球氣候模式中所欠缺的中小尺度擾動(聖克魯茲渦流、海陸風交互作等)進行探討。這些欠缺的中小尺度擾動對於大尺度模式在經由長時間累積的作用後可能會造成系統性的誤差。
本研究使用的為天氣研究與預測模式(WRF)與一陸地表面模式耦合之區域氣候模式,WRFCLM3,以及另一根基於非靜力近岸海洋之蒙特瑞灣區之模式(MBARM)所耦合成之海洋累積區域性氣候系統模式。 模式之結果分析指出,海洋累積區域性氣候系統模式之結果可以完整的將中小尺度擾動完整的呈現出來,同時也可以將海洋中的湧升及沉降流完整的模擬出來。在大尺度氣候場方面,本模式也可以將位於東北太平洋之東方邊界流與上方之大氣副熱帶高壓及其風場模擬完整。進一步利用本模式進行分析可以發現,在利於湧升流的風場條件下,海面會有1~1.5°C的降溫現象,與在同一時間時,觀測資料顯示出海面有2°C的降溫一致。與此同時的氣候值則只顯示出0.3°C的海洋降溫。藉此可以顯現出氣候值在此的缺陷。而海洋的海流也因為使用了WRFCLM3的風場做為初始場,使得海流之艾克曼湧升現象相較於使用氣候風場做為比較時增強,而與觀測值較為符合。在大氣的部份中,由於使用之海溫場較溫暖,因此大氣溫度場的部份亦較高,使得本身大氣的溼氣與含水量增加。 本研究指出,海洋累積區域性氣候系統模式為一重要之大氣與海洋耦合模式,同時也可增進未來氣候之研究。在計算允許的情況下,全球性之中小尺度氣候模式亦為一相當重要之研究目標。 | zh_TW |
dc.description.abstract | Air-land-sea interaction in the vicinity of Monterey Bay, CA is simulated and investigated using a Regional Climate System Model (RCSM). Several coastal processes and submesoscale features can be fully resolved using the RCSM while these processes and features are poorly represented in the state-of-the-art global climate model, resulting in significant and systematic biases in the long term climate integration. The current RCSM couples the Weather Research and Forecast with Community Land Model version3 (WRFCLM3) and a full function coastal ocean model, which is based on the non-hydrostatic Monterey Bay Area Regional Model (MBARM). Our model results show the importance of detailed ocean feedback due to unique coastal dynamic. The comparison with observation indicates the requirement of accurate representation of ocean surface. In the ocean, the coastal upwelling and submesoscale gyres are well-simulated in the RCSM. The daily sea (land) breeze circulations and commonly-seen Santa Cruz Eddy (SCE) are fully resolved resulting from the sea surface temperature feedback and adequate resolution in the coastal margin. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:59:01Z (GMT). No. of bitstreams: 1 ntu-99-R96229007-1.pdf: 13796831 bytes, checksum: 9a2f27474e55b1ee91d7284a949dd772 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Master Oral Committee Agreement............................................i
Special Thanks.............................................................................ii English Abstract………………………………………………..iii Chinese Abstract………………………………………………..v Chapter 1: Introduction…………..…………………………....1 Section 1.1: Coastal upwelling process, and Santa Cruz Eddy……………………1 Section 1.2: Land Sea Breeze Circulation……………………………………….....5 Section 1.3: Model description for Integrated RCSM………………………….......7 Section 1.4: Objectives…………………………………………………………....11 Section 1.5: Outlines………………………………………………………………12 Chapter 2: Atmospheric and Oceanic Observation...……….13 Section 2.1: Station introduction………………………………………………….14 Section 2.2: Land Sea Breeze interaction…………………………………………15 Chapter 3: Model Description..……………………………….18 Section 3.1: Model description – WRFCLM3…………………………………...18 Section 3.2: Dynamical downscaling......................................................................20 Section 3.3: Model Description – MBARM……...................................................21 Section 3.4: Ocean Integrated Regional Climate System Model (Integrated RCSM)…………………………………………………………………………….22 Section 3.5: Experiment settings………………………………………………….24 Section 3.6:Initial and boundary condition………………………………………..26 Chapter 4: Uncoupled WRFCLM3 Model Results………….27 Section 4.1: Land Sea Breeze circulation………………………………………....27 Section 4.2: Santa Cruz Eddy…………………………………………………......30 Section 4.3: Upwelling Favorable Wind………………………………………….32 Section 4.4: Conclusion for wind field………………………………………........34 Chapter 5: Regional Climate System Model Result……........36 Section 5.1: MBARM result with and without coupling with WRFCLM3………36 Section 5.2: Upwelling Favorable Wind pattern in Integrated RCSM……………39 Section 5.3: Post-UFW in Integrated RCSM………………………………….......40 Section 5.4: Heat flux in Integrated RCSM……………………………………….42 Chapter 6: Sensitivity Test………………………………........43 Section 6.1: Temperature and momentum difference…………………………….43 Section 6.2: Difference in moisture flux………………………………………….45 Chapter 7: Conclusion………………………………………...47 Figures………………………………………………………….50 Tables…………………………………………………………..76 Reference……………………………………………………….78 Appendix…………………………………………………….....82 | |
dc.language.iso | en | |
dc.title | 模式耦合應用於海地氣交互作用 | zh_TW |
dc.title | Modeling Air-Land-Sea Interaction using Regional Climate System Model (RCSM) in Monterey Bay, CA | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 莊秉潔(Ben-Jei Tsuang),吳清吉(CHING-CHI WU),梁茂昌(Mao-Chang Liang),林傳堯(Chuan-Yao Lin) | |
dc.subject.keyword | 海陸風循環,中小尺度擾動,大氣海洋模式耦合,海地氣交互作用,太平洋東方邊界流, | zh_TW |
dc.subject.keyword | Air–land–sea interaction,Santa Cruz Eddy,land sea breeze circulation,regional climate system model,WRFCLM3,coastal upwelling process, | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-04-28 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 13.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。