請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44919完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周宏農 | |
| dc.contributor.author | Ming-Chieh Lee | en |
| dc.contributor.author | 李明潔 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:58:20Z | - |
| dc.date.available | 2012-05-24 | |
| dc.date.copyright | 2010-05-24 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-05-22 | |
| dc.identifier.citation | 周宏農 (1999)。水產品藻源毒素檢測操作手冊。行政院衛生署。132 p.
盧重光 (2001)。台灣產兩種原甲藻之毒素研究。國立台灣大學海洋研究所,博士論文。196 p. 余昌憲 (2006)。磷營養鹽供應模式在利瑪原甲藻生長及生產大環內酯天然物的影響。國立台灣大學漁業科學研究所,碩士論文。64 p. 吳建欣 (2007)。利瑪原甲藻的黑海綿酸釋放與提純最佳化研究。國立台灣大學漁業科學研究所,碩士論文。56 p. 丁霞、余宗亮、杜偉峰、蔡寶昌 (2008)。SP825-大孔樹脂富集山茱萸環烯醚萜苷的工藝研究。中成藥 30(1). 張志東、楚敏、宋素琴、唐琦勇 (2007)。SP825大孔樹脂静態吸附甘草總黄酮的研究。農產品加工學刊 8. 張建、毛曉英、李寶坤(2008)。大孔吸附樹脂純化粗提葡萄梗單寧研究。安徽農業科學學報 36(36), 15767-15769. 張睿、林強(2006)。利用HP-20大孔樹脂提取分離甘草黃酮的研究。北京聯合大學學報(自然科學版)20(2), 20-22. 舒曉燕、阮期平(2008)。山茱萸總苷的分離及抑菌活性研究。食品科學學報 29(12), 353-357. 劉志祥、曾超珍(2009)。大孔樹脂法純化苦丁茶總黃酮的研究。時真國醫國藥 20(9). 霍清、林強(2007)。SP825大孔吸附樹脂分離提取苦參鹼的研究。食品科學報 28(11), 134-138. Anderson, D.M., D.M. Kulis, J.J. Sullivan, S. Hall and C. Lee (1990). Dynamics and physiology of saxitoxin production by the dinoflagellates Alexandrium spp. Mar. Biol. 104 (3), 511-524. Akiyama, T., S. Harada, F. Kojima, Y. Takahshi, C. Imada, T. Okami, Y. Muraoka, T. Aoyagi and T. Takeuchi (1998). Fluostatins A and B, new inhibitors of dipeptidyl peptidase Ш, produced by Streptomyces sp. TA-3391. J. Antibiot. 51, 553-559. Arufe, M.C., G.J. Beckett, R. Durán and M. Alfonso (1999). Effect of okadaic acid and calyculin-A, two protein phosphatase inhibitors, on thyrotropin-stimulated triiodothyronine secretion in cultured sheep thyroid cells. Endocrine 11 (3), 235-240. Blanco, J., M. Fernández, A. Míguez and A. Moroño (1999). Okadaic acid depuration in the mussel Mytilus galloprovincialis: one- and two-compartment models and the effect of environmental conditions. Mar. Ecol. Prog. Ser. 176, 153-163. Borowitzka, M.A. (1999). Commercial production of microalgae: Ponds, tanks, tubes and fermentors. J. Biotechnol. 70, 313-321. Bravo, I., M.L. Fernandez, I. Ramilo and A. Martinez (2001). Toxin composition of the toxin dinoflagellate Prorocentrum lima isolated from different locations along the Galician coast (NW Spain). Toxicon 39, 1537-1545. Burkhardt, S., I. Zondervan and U. Reibesell (1999). Effect of CO2 concentration on C:N:P ratio in marine plankton: a species compartition. Limnol. Oceanogr. 44, 683-690. Casillas, A.M., K. Amaral, S. Chegini-Farahani and A.E. NEL (1993). Okadaic acid activates p42 mitogen-activated protein kinase (MAP kinase; ERK-2) in B-lymphocytes but inhibits rather than augments cellular proliferation: contrast with phorbol 12-myristate 13-acetate. Biochem. J. 290, 545-55. Carmody, E.P., K.J. James and S.S. Kelly (1996). Dinophysistoxin-2: the predominant diarrhoetic shellfish toxin in Ireland. Toxicon 34 (3), 351-359. Chen, F. and M.R. John (1996). High cell density of Chlamydomonas reinhardtii on acetate using fed-batch and hollow-fibre cell-recycle system. Bioresour. Technol. 55, 103-110. Cohen, P., C.F.B. Holmes and Y. Tsukitani (1990). Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem. Sci. 15, 98-102. Collins, C.D. and C.W. Boylen (1982). Ecological consequences of longterm exposure of Anabaena variabilis (Cyanophyceae) to shifts in environmental factors. Appl. Environ. Microbiol. 44, 141-148. Cormont, M., J.F. Tanti, A. ZahraouiQ, E.V. Obberghen, A. Tavitian and Y.L. Marchand-Brus (1993). Insulin and okadaic acid induce Rab4 redistribution in adipocytes. J. Biol. Chem. 268 (26), 19491-19497. Curl, H., and G.C. McLeod (1961). The physiological ecology of a marine diatom, Skeletonema costatum (Grev.) Cleve. J. Mar. Res. 19, 70-88. Del Campo, J.A., M. García-González and M.G. Guerrero (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl. Microbiol. Biotechnol. 74 (6), 1163-1174. De la Nöue, J. and D. Ni Eidhin (1988). Improved performance of intensive semicontinuous cultures of Scenedesmus by biomass recirculation. Biotechnol. Bioeng. 31 (5), 397–406. Delgado, L.M., P. Peña, D. Camino and F. Barros (1992). Okadaic acid and calyculin A enhance the effect of thyrotropin-releasing hormone on GH3 rat anterior pituitary cells excitability. FEBS Lett. 311 (1), 41-45. Dickey, R.W., S.C. Bobzin, D.J. Faulkner, F.A. Bencsath and D. Andrzejewski (1990). Identification of okadaic acid from a Caribbean dinoflagellate, Prorocentrum concavum. Toxicon 28, 371–377. Ferrero-Gutiérrez, A., A. Pérez-Gómez, N. Antonello and M.T. Fernández-Sánchez (2008). Inhibition of protein phosphatases impairs the ability of astrocytes to detoxify hydrogen peroxide. Free Radic. Biol. Med. 44 (10), 1806-1816. García, C., D. Truan, M. Lagos, J.P. Santelices, J.C. Díaz and N. Lagos (2005). Metabolic transformation of dinophysistoxin-3 into dinophysistoxin-1 causes human intoxication by consumption of o-acyl-derivatives dinophysistoxins contaminated shellfish. J. Tox. Sci. 30, 287-296. García-Sáinz, J.A., M. Macías-Silva, and M.T. Romero-Avila (1991). Effect of okadaic acid on hormone- and mastoparan-stimulated phosphoinositide turnover in isolated rat hepatocytes. Biochem. Biophys. Res. Commun. 179 (2), 852-858. Gudin, C. and D. Chaumont (1980). A biotechnology of photosynthetic cells based on the use of solar energy. Biochem. Soc. Trans. 8, 481–482. Guy, G.R., X. Cao, P. Chua, and Y.H. Tan (1992). Okadaic acid mimics multiple changes in early protein phosphorylation and gene expression induced by tumor necrosis factor or interleukin-1. J. Biol. Chem. 267 (3), 1846-1852. Hackatt, J.D., T. Mengmeng, D.M. Kulis, E. Fux, P. Hess, R. Bire and D.M. Anderson (2009). DSP toxin production de novo in cultures of Dinophysis acuminata (Dinophyceae) from North America. Harmful Algae 8, 873-879. Hallegraeff, G.M., D.M. Anderson, A.D. Cembella and H.O. Enevoldsen (1995). In: Intergovernmental Oceanographic Commission (of UNESCO) Manuals and Guides 33. Manual on Harmful Algal Bloom. Herschman, H.R., R.W. Lim, D.W. Brankow and H. Fujiki (1989). The tumor promoters 12-O-tetradecanoylphorbol-12-acetate and okadaic acid differ in toxicity, mitogenic activity and induction of gene expression. Carcinogenesis 10, 1495-1494. Haystead, T.A., A.T.R. Simm, D. Carling, R.C. Honnor, Y. Tsukitani, P. Cohen and D.G. Hardie (1989). Effects of the tumor promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 337, 78-81. Hosokawa, M., H. Tsukada, T. Saitou, M. Kadama, M. Onomura, H. Nakamura, K. Fukuda and Y. Seino (1998). Effects of okadaic acid on rat colon. Dig. Dis. Sci. 43 (11) 2526- 2535. Hu, T., J. Doyle, D. Jackson, J. Marr, E. Nixon, S. Pleasance, M.A. Quilliam, J.A. Walter and J.L.C. Wright (1992a). Isolation of a new diarrhetic shellfish poison from Irish mussels. J. Chem. Soc. Chem. Commun. 39-41. Hu, T., J. Marr, A.S.W. deFreitas, M.A. Quilliam, J.A. Walter and J.L.C. Wright. (1992b). New diol esters isolated from cultures of the dinoflagellates Prorocentrum lima and Prarocentrum concawm. J. Nat. Prod. 55, 1631-1637. Hu, T., A.S.W de Freitas., J. Doyle, D. Jackson, J. Marr, E. Nixon, S. Pleasance, M.A. Quilliam, J.A. Walter and J.L.C. Wright (1993). New DSP toxin derivatives isolated from toxic mussels and the dinoflagellates, Prorocentrum lima and Prorocentrum concavum. In: Smayda, T.J. and Shimizu, Y. (Eds.), Toxic Phytoplankton Bloom in the Sea, Elsevier Science Publishers, Amsterdam, Holland, pp.507-512. Hu, T., J. M. Curtis, J.A. Walter and J.L.C. Wright (1995a). Identification of DTX-4, a new water-soluble phosphatase inhibitor from the toxic dinoflagellate Prorocentrum lima. J. Chem. Soc. Chem. Commun. 597-599. Hu, T., J.M. Curtis, J.A. Walter, J.L. McLachlan and J.L.C. Wright (1995b). Two new water-soluble DSP toxin derivatives from the dinoflagellate Prorocentrum maculosum: possible storage and excretion products. Tetrahedron Lett. 36, 9273-9276. Hu, Q. and A. Richmond (1994). Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J. Appl. Phycol. 6, 391–396. Hu, Q., N. Kurano, M. Kawachi, I. Iwasaki and S. Miyachi (1998). Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl. Microbiol. Biotechnol. 49 (6), 655-672. Ichiyama, K., A. Tai and I. Yamamoto (2007). Augmentation of antigen-specific antibody production and IL-10 generation with a fraction from Rooibos (Aspalathus linearis) tea. Biosci. Biotechnol. Biochem. 71, 598-602. Javanmardian, M. and B.O. Palsson (1991). High-density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system. Biotechnol. Bioeng. 38 (10), 1182-1189. Jonsson, P.R., H. Pavia and G. Toth (2009). Formation of harmful algal blooms cannot be explained by allelopathic interactions. PNAS 106 (40), 17071-17076. Kamiyama, T. and T. Suzuki (2009). Production of dinophysistoxin-1 and pectenotoxin-2 by a culture of Dinophysis acuminata (Dinophyceae). Harmful Algae 8, 312–317. Keller, M.D., R.C. Selvin, W. Claus and R.R.L. Guillard (1987). Media for the culture of oceanic ultraphytoplankton. J. Phycol. 23 (4), 633-638. Lee, Y.K. and A. Richmond (1998). Bioreactor technology for mass cultivationof photoautotrophic microalgae. In: Fingerman, M., Nagabhushanam, R.and Thompson, M. (Eds.), Recent Advances in Marine Biotechnology Vol. 2, Environmental Marine Biotechnology, Oxford & IBH, New Delhi, pp. 271–288. Lee, C.G.. and B. Palsson, (1994). High-density algal photobioreactors using light-emitting diodes. Biotechnol. Bioeng. 44 (10), 1161-1167. Lu, D., S. Zhang, J. Wang, H. Li and Y. Dai (2008). Adsorption separation of 3β-D-monoglucuronyl-18β-glycyrrhetinic acid from directional biotransformation products of glycyrrhizin. Afr. J. Biotechnol. 7 (22), 3995-4003. MacKenzie, L., V. Beuzenberg, P. Holland, P. McNabb and A. Selwood (2004). Solid phase adsorption toxin tracking (SPATT): a new monitoring tool that simulates the biotoxin contamination of filter feeding bivalves. Toxicon 44 (8), 901-918. McLachlan, J.L., J.C. Marr, A. Conlon-Kelly and A. Adamson (1994). Effects of nitrogen concentration and cold temperature on DSP-toxin concentrations in the dinoflagellate Prorocentrum lima. Nat. Toxins 2, 263-270. McMahon, T., J. Silke, E. Nixon, B. Taae, A. Nolan, E. McGovern and J. Doyle (1996). Seasonal variation in diarrhetic shellfish toxins in mussels from the Southwest coast of Ireland in 1994. In: Keegan, B.F. and O'Connor, R. (Eds.), Irish Marine Science 95, Galway University Press, Galway, pp. 417-432. McCarron P., K. Jane and H. Philipp (2008). Effects of cooking and heat treatment on concentration and tissue distribution of okadaic acid and dinophysistoxin-2 in mussels (Mytilus edulis). Toxicon 51 (6), 1081-1089. Miles, C.O., A.L. Wilkins, A.D. Hawkes, D.J. Jensen, J.M. Cooney, K. Larsen, D. Petersen, F. Rise, V. Beuzenberg and L.A. MacKenzie (2006). Isolation and identification of a cis-C8-diol-ester of okadaic acid from Dinophysis acuta in New Zealand. Toxicon 48 (2), 195–203. Molina-Grima, E., F.G. Acién Fernández, F. García Camacho and Y. Chisti (1999). Photobioreactors: light regime, mass transfer and scaleup. J. Biotechnol. 70, 231–247. Momose, I., N. Kinoshita, R. Sawa, H. Naganawa, H. Iinuma, M. Hamada and T. Takeuchi (1997). Nothramicin, a new anthracycline antibiotic from Nocardia sp. MJ896-43F17. J. Antibiot. 51, 130-135. Morana, S.J., C.M. Wolf, J. Li, J.E. Reynolds, M.K. Brown and A. Eastman (1996). The involvement of protein phosphatases in the activation, DNA digestion, and apoptosis. J. Biol. Chem. 271, 18263-18271. Morlaix, M. (1992). Nitrogen and phosphorus effects upon division rate and toxicity of Prorocentrum lima (Ehrenberg) Dodge. Cryptogam. Algologie 13, 187-195. Murata, M., M. Shimatami, S H. ugitami, Y. Oshima and T. Yasumoto (1981). Isolation and structural elucidation of the causative toxin of the diarrhetic shellfish poisoning. Bull. Jpn. Soc. Sci. Fish. 48, 549-552. Nascimento, S.M., D.A. Purdie and S. Morris (2005). Morphology, toxin composition and pigment content of Prorocentrum lima strains isolated from a coastal lagoon in southern UK. Toxicon 45, 633-649. Okada, H., S. Kamiya, Y. Shina, H. Suwa, M. Nagashima, S. Nakajima, H. Shimokawa, E. Sugiyama, H. Kondo, K. Kojiri and H. Suda (1998). BE-31405, a New Antifungal Antibiotic Produced by Penicillium minioluteum. J. Antibiot. 51, 1081-1086. Olaizola, M. (2000). Commercial production of astaxanthin from Haematococcus pluvialis using 25000-liter outdoor photobioreactors. J. Appl. Phycol. 12, 499–506. Park, M.G., S. Kim, H.S. Kim, G.. Myung, Y.G. Kang and W. Yih (2006). First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat. Microb. Ecol. 45, 101–106. Paul, V.J., K.E. Arthur, R. Ritson-Williams, C. Ross and K. Sharp (2007). Chemical Defenses: From Compounds to Communities. Biol. Bull. 213, 226-251 Paz, B., A.H. Daranas, P.G. Cruz, J.M. Franco, G.. Pizarro, M.L. Souto, M. Norte and J.J. Fernandez (2007a). Characterization of okadaic acid related toxins by liquid chromatography coupled with mass spectrometry. Toxicon 50, 225–235. Paz, B., A.H. Daranas, P.G.. Cruz, J.M. Franco, J.G.. Napolitano, M. Norte and J.J. Fernandez (2007b). Identification and characterization of DTX-5c and 7-hydroxymethyl-2-methylene-octa-4,7-dienyl okadaate from Prorocentrum belizeanum cultures by LC-MS. Toxicon 50 (4), 470-478. Pizarro, G., L. Escalera, S. González-Gil, J.M. Franco and B. Reguera (2008). Growth, behaviour and cell toxin quota of Dinophysis acuta during a daily cycle. Mar. Ecol. Prog. Ser. 353, 89–105. Pratt, R. and J. Fong (1940). Influence of the size of inoculum on the growth of Chlorella vulgaris in freshly prepared culture medium. Am. J. Bot. 27, 52-56. Pulz, O. (2001). Photobioreactors: production systems of phototrophic microorganisms. Appl. Microbiol. Biotechnol. 57, 287–293. Pulz, O. and W. Gross (2004). Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65, 635–648. Quilliam, M.A. and N.W. Ross (1996). Analysis of diarrhetic shellfish poisoning toxins and metabolites in plankton and shellfish by ion-spray liquid chromatography-mass spectrometry. In: Snyder, A.P. (Ed.), Biochemical and Biotechnological Applications of Electrospray Ionization Mass Spectrometry, American Chemical Society, Washington, DC. U.S.A., pp. 351-364. Quilliam M.A., N. Ishida, J.L. McLachlan, N.W. Ross and A.J. Windust (1997). Analytical methods for diarrhetic shellfish poisoning (DSP) toxins and a study of toxin production by Prorocentrum lima in culture. UJNR Technical Report 24, 101-106. Reguera, B., I. Bravo, C. Marcaillou-Le Baut, P. Masselin, M.L. Fernández, A. Míguez, and A. Martínez (1993). Monitoring of Dinophysis spp. and vertical distribution of okadaic acid on mussel rafts in Ría de Pontevedra (NW, Spain). In: Smayda, T.J. and Shimizu, Y. (Eds.), Toxic Phytoplankton Blooms in the Sea, Elsevier Science Publishers, Amsterdam, Holland, pp. 553–558. Richmond, A. (2000). Microalgal biotechnology at the turn of the millennium: A personal view. J. Appl. Phycol. 12, 441-451. Rundberget, T., M. Sandvik, K. Larsen, G.M. Pizarro, B. Reguera, T. Castberg, E. Gustad, Jared I. Loader, F. Rise, A.L. Wilkins and C.O. Miles. (2007). Extraction of microalgal toxins by large-scale pumping of seawater in Spain and Norway, and isolation of okadaic acid and dinophysistoxin-2. Toxicon 50 (7), 960-970. Sakshaug, E., K. Andresen, S. Myklestad and Y. Olsen (1983). Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish and fresh) as revealed by their chemical composition. J. Plankton Res. 5, 175–196. Schönthal, A. (1992). Okadaic acid- a valuable new tool for the study of signal transduction and cell cycle regulation? New Biol. 4, 16-21. Suganuma, M., H. Fujiki, H. Suguri, S. Yoshizawa, M. Hirota, M. Nakayasu, M. Ojika, K. Wakamatsu, K. Yamada and T. Sugimura (1988). Okadaic acid: An additional non-phorbal-12-tetradecanoate-13-acetate-type tumor promoter. Proc. Natl. Acad. Sci. U.S.A. 85, 1768-1771. Suzuki, T., T. Mitsuya, H. Matsubara, M. Imai and M. Yamasaki (1997). DSP toxin contents in Dinophysis fortii and scallops collected at Mutsu Bay, Japan. J. Appl. Phycol. 8, 509-515. Suzuki, T., T. Mitsuya, H. Matsubara and M. Yamasaki (1998). Determination of pectenotoxin-2 after solid-phase extraction from seawater and from the dinoflagellate Dinophysis fortii by liquid chromatography with electrospray mass spectrometry and ultraviolet detection: Evidence of oxidation of pectenotoxin-2 to pectenotoxin-6 in scallops. J. Chromatogr. A 815, 155-160. Suzuki, T., V. Beuzenberg, L. Mackenzie and M.A. Quilliam (2004). Discovery of okadaic acid esters in the toxin dinoflagellte Dinophysis acuta from New Zealand using liquid cgromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18, 1131-1138. Suzuki, T., T. Kamiyama, Y. Okumura, K. Ishihara, R. Matsushima and M. Kaneniwa (2009). Liquid-chromatographic hybrid triple–quadrupole linear-ion-trap MS/MS analysis of fatty-acid esters of dinophysistoxin-1 in bivalves and toxic dinoflagellates in Japan. Fis. Sci. 75(4), 1039-1048. Tachibana, K., P.J. Scheuer, Y. Tsukitani, H. Kikuchi, D. Van Engen, J. Clardy, Y. Gopichand and F.I. Schmitz (1981). Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halicondria. J. Am. Chem. Soc. 103, 2469-2471. Takahashi, E., Q. Yu, G. Eaglesham, D.W. Connell, J. McBroom, S. Costanzo and G.R. Shaw (2007). Occurrence and seasonal variations of algal toxins in water, phytoplankton and shellfish from North Stradbroke Island, Queensland, Australia. Mar. Environ. Res. 64 (4), 429-42. Takai, A. and C. Bialojan (1988). Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Biochem. J. 256, 283-290. Thomas, H.G. (1948). Chromatography: a problem in kinetics. Ann. N.Y. Acad. Sci. 49, 161–182. Torgersen, T., J. Aasen and T. Aune (2005). Diarrhetic shellfish poisoning by okadaic acid esters from Brown crabs (Cancer pagurus) in Norway. Toxicon 46, 572-578. Traubenberg, D.C., M.L. Geraud, M.O. Soyer-Gobillard and D. Emdadi (1995). The toxic dinoflagellate Prorocentrum lima and its associated bacteria. I. An ultrastructural study. Eur. J. Protistol. 31 (3), 318-326. Vale, P. and M.A. de M. Sampayo (2000). Dinophysistoxin-2: a rare diarrhetic toxin associated with Dinophysis acuta. Toxicon 38, 1599-1606. Vale, C. and L.M. Botana (2008). Marine toxins and the cytoskeleton: okadaic acid and dinophysistoxins. FEBS J. 275, 6060–6066. Valmu L. and C.G. Gahmberg (1995). Treatment with okadaic acid reveals strong threonine phosphorylation of CD18 after activation of CD11/CD18 leukocyte integrins with phorbol esters or CD3 antibodies. J. Immunol. 155 (3), 1175-1183. Wang, D.Z. (2008). Neurotoxins from marine dinoflagellates: A brief review. Mar. Drug. 6 (2), 349–371. Wang, D.Z. and D. Hsieh (2002). Effects of nitrate and phosphate on growth and C2 toxin productivity of Alexandrium tamarense CI01 in culture. Mar. Pollut. Bull. 45, 286-289. Weissman, J.C., R.P. Goebel and J.R. Benemann (1988). Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol. Bioeng. 31, 336–344. Windust, A.J., J.L.C. Wright and J.L. McLachlan (1996). The effects of the diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin-I, on the growth of microalgae. Mar. Biol. 126, 19-25. Windust, A.J., M.A. Quilliam, J.L.C. Wright and J.L. McLachlan (1997). Comparative toxicity of the diarrhetic shellfish poisons, okadaic acid, okadaic acid diol-ester and dinophysistoxin-4, to the diatom Thalassiosira weissflogii. Toxicon 35, 1591-1603. Windust, A.J., T. Hu, J.L.C. Wright, M.A. Quilliam and J.L. Mclachlan (2000). Oxidative metabolism by Thalassiosira weissflogii (Bacillariophyceae) of a diol-ester of okadaic acid, the diarrhetic shellfish poisoning. J. Phycol. 36, 342–350. Wright, J.L.C. (1995). Dealing with seafood toxins: present approaches and future options. Food. Res. Int. 28 (4), 347-358. Yasumoto, T., Y. Oshima, W. Sugawara, Y. Fukuyo, H. Oguri, T. Igarashi and H. Fujita (1980). Identification of Dinophysis fortii as the causative organism of diarrhetic shellfish poisoning. Bull. Jpn. Soc. Sci. Fish. 46, 1405-1411. Yasumoto, T., M. Murata, Y. Oshima, M. Sano, G.K. Matsumoto and J. Clardy (1985). Diarrhetic shellfish toxins. Tetrahedron 41, 1019-1025. You, T. and S.M. Barnett (2004). Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem. Eng. J. 19(3), 251-258. Zhang, C.W. and A. Richmond (2003). Sustainable, high-yielding outdoor mass cultures of Chaetoceros muelleri var. subsalsum and Isochrysis galbana in vertical plate reactors. Mar. Biotechnol. 5 (3), 302-310. Zhou, J. and L. Fritz (1994). The pas/accumulation bodies in Prorocentrun lima and Prorocentrum maculosum (Dinophyceae) are dinoflagellate lysosomes. J. Phycol. 30, 39-44. Zou, N., C. Zhang, Z. Cohen and A. Richmond (2000). Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Eur. J. Phycol. 35, 127-133. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44919 | - |
| dc.description.abstract | 本研究試圖從利瑪原甲藻的培養液中回收其在生長中所釋出於培養基中的岡田海綿酸 (okadaic acid, OA),並改良其提純方法,藉由細胞自然沉降濃縮與置換新鮮培養基的接種方式,提升利瑪原甲藻到前所未有的高細胞密度 (105 cells/mL以上)。在試圖以環境因子刺激OA釋放的研究中,發現間歇性手動搖晃與連續打氣刺激不會促進單位細胞釋毒率,且在隨後兩週的完全靜置情況下,細胞仍不斷釋出OA,其單位細胞釋毒率甚至比震盪處理下高,證明OA不若前人報告所稱需要攪動刺激而去酯反應釋出,在完全靜置情況下OA主動釋出到細胞外,而胞外高濃度的OA並不會抑制利瑪原甲藻的細胞生長,但降低其OA的釋放率,在低濃度胞外OA (0.51±0.03 mg/L)環境時,有較高的釋放率 (0.54±0.19 pg/cell/day),而在高濃度胞外OA (3.74±0.2 mg/L) 環境時,其釋放率 (0.02±0.12 pg/cell/day) 大幅降低。高細胞密度培養下所釋出的OA極為可觀,利用合成吸附樹脂SP825充填的管柱,以幫浦設定不同流速輸送含OA的無細胞培養液通過管柱,測試SP825對OA的吸附效率,得知其吸附量至少有10 mg/g,隨後藉由甲醇的自動迴流萃取,脫附率可達97.35%;粗萃取物經過自動化速分管柱層析,提純率達90%以上。本研究探討培養中利瑪原甲藻細胞OA的釋出,並建立快速回收OA的方法,確定部分操作參數,以提供未來商業化生產的參考。 | zh_TW |
| dc.description.abstract | This study attempted to recover the released okadaic acid (OA) from the cultures of P. lima and improve the methodology of OA isolation. In P. lima culture, we found that OA was released and accumulated in the medium as mentioned elsewhere and in our previous studies. Thus, in order to enhance the OA production through the recovery from medium, high cell-density (over 105 cells/mL) cultures of P. lima were obtained by settling down the cells and replacing the old medium with fresh one. Treatments, such as increasing of vibration or aeration were found no enhancement in OA releasing rate of the cultured cells. It was found after a two-week period of static treatment of a culture in stationary phase, cells continuously released OA, and the releasing rate was even higher while comparing that with the vibration-treated culture at the same status. This result demonstrated that OA releasing in P. lima was spontaneous and was not as a result of stimulation from shaking or aerations reported elsewhere. It also showed that high concentration of extracellular OA did not affect the growth of P. lima cells, but inhibited the releasing of OA. In a medium of low extracellular OA content (0.51±0.03 mg/L), PL03 released OA at a higher rate (0.54±0.19 pg/cell/day) than that (0.02±0.12 pg/cell/day) of the cells maintained in a medium of higher extracellular OA (3.74±0.2 mg/L). The amount of OA released in high cell-density culture was substantially enormous. The revovery of OA from media was done by SP825 adsorption which was performed by a flow of medium through a column of 25 g SP825. Various flow rates had been tested for optimization and a capacity more than 10 mg OA/g SP825 was observed. The adsorbed toxin was easily eluted at a recovery of 97.35% by methanol using Soxlet reflux. The recovered crude extract was subjected for further CombiFlash column (Si) chromatographic separation to reach a purity more than 90% in the fractions collected. This study explored the releasing of OA in P. lima and established some parameters of OA recovery methodology for the future commercial production. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:58:20Z (GMT). No. of bitstreams: 1 ntu-99-R96b45035-1.pdf: 531693 bytes, checksum: 8551f3f9f1e55bce746bc47abb9d043e (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………. i
誌謝………………………………………………………………………………. ii 中文摘要…………………………………………………………………………. iii 英文摘要…………………………………………………………………………. iv 目錄………………………………………………………………………………. v 圖目錄……………………………………………………………………………. viii 表目錄……………………………………………………………………………. ix 第一章 前言 1.1岡田海綿酸與利瑪原甲藻 …………………..……….……………….. 1 1.2 藻株的培養………………………………………………….…………..... 4 1.3 毒素的釋放…………………………………………………….…………. 5 1.4 毒素分析樣品前處理方法的改進…………...…………………...……… 7 1.5 毒素的回收與提純……………………………………………………….. 8 第二章 材料與方法 2.1 藻種來源與培養…………….………………………….………………... 12 2.2 毒素分析…………………………………………………………………. 12 2.2.1高效液相層析………………………………………..………………. 12 2.2.2 毒素標準品檢量線校正與定量分析……………………………….. 12 2.2.3 培養液中胞外毒素分析……….……………………..……………... 13 2.2.3.1 液-液萃取之樣品前處理………………………………...….…. 13 2.2.3.2 C18固相萃取之樣品前處理…………………………………… 13 2.3 細胞培養濃度與OA釋放………………………………………...…….. 14 2.3.1細胞成長率與毒素釋放率的計算……………………………...…… 14 2.3.2 細胞液的濃縮………………………………………...……………... 14 2.3.3 不同OA濃度培養液的配置……………………………………...… 15 2.3.4 不同處理對利瑪原甲藻生長,OA生產與釋放的影響………….... 15 2.3.4.1 打氣、搖晃與靜置培養對利瑪原甲藻OA釋放的影響…….... 15 2.3.4.2 胞外OA濃度對利瑪原甲藻成長率與OA釋放率的影響…… 15 2.3.4.3 胞外OA濃度在靜置與震盪培養的情況下對利瑪原甲藻 OA釋放率的影響……........…………………………….…...….. 16 2.3.4.4 胞外OA濃度與細胞密度在靜置培養時對利瑪原甲藻OA 釋放率的影響...…………………………………………………. 16 2.4 SP825的吸附與脫附…………………………………………….......…… 17 2.4.1 SP825吸附效率測試…………………………………………...……. 17 2.4.2 SP825脫附效率測試……………………………………………...…. 17 2.5 快速色層分析儀自動化OA分離效果與產率.……………………...….. 17 2.5.1 薄層層析……………………………………………………...……... 18 2.6 資料統計分析………………………………………………………...….. 18 第三章 結果與討論 3.1 液-液萃取與C18固相萃取樣品前處理的比較………………………... 19 3.2 不同外在條件對利瑪原甲藻生長,OA生產與釋放的影響….........…. 19 3.2.1打氣、搖晃與靜置培養對利瑪原甲藻OA釋放的影響……...….... 19 3.2.2 胞外OA濃度對利瑪原甲藻成長率與OA釋放率的影響……....... 21 3.2.3 胞外OA濃度在靜置與震盪培養的情況下對利瑪原甲藻OA 釋放率的影響………..……….………………………….……...….…. 23 3.2.4 胞外OA濃度與細胞密度在靜置培養時對利瑪原甲藻OA釋 放率的影響…...………..……………….…..……………….....…….. 24 3.3 SP825的吸附與脫附………………………………………………...…… 25 3.3.1 SP825吸附效率測試……………………………………………….... 25 3.3.2 SP825脫附效率測試…………...………………………………….… 26 3.4快速色層分析儀自動化OA分離效果與產率.………………………...... 27 第四章 參考文獻………………………………………………………………... 29 圖、表…………………………………………………………………………..... 42 附錄一、DSP structure..…………………………………………………………. 55 附錄二、f/2 stock………………………………………………………….…….. 56 附錄三、合成吸附樹脂…………………………………………………………. 57 附錄四、OA之高效液相層析圖譜…………………………………………….. 58 附錄五、OA 檢量線…………………………………………………………..... 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 岡田海綿酸 | zh_TW |
| dc.subject | 利瑪原甲藻 | zh_TW |
| dc.subject | Prorocentrum lima | en |
| dc.subject | Okadaic Acid | en |
| dc.title | 利瑪原甲藻岡田海綿酸的釋出與回收研究 | zh_TW |
| dc.title | Studies on the Releasing and Recovery of Okadaic Acid in
the Culture of Prorocentrum lima | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李澤民,陳鳴泉,吳世雄 | |
| dc.subject.keyword | 利瑪原甲藻,岡田海綿酸, | zh_TW |
| dc.subject.keyword | Prorocentrum lima,Okadaic Acid, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-05-23 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 519.23 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
