Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44910
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光
dc.contributor.authorChao-Ting Wuen
dc.contributor.author吳肇庭zh_TW
dc.date.accessioned2021-06-15T03:58:04Z-
dc.date.available2013-06-15
dc.date.copyright2010-06-15
dc.date.issued2010
dc.date.submitted2010-05-26
dc.identifier.citation[1] Hagood, N., and Von Flotow, A., (1991), “Damping of structural vibrations with piezoelectric materials and passive electrical networks,” Journal of Sound and Vibration,146(2): 243-268.
[2] Wu, S. Y., (1996), “Piezoelectric Shunts with a Parallel RL Circuit for Structural Damping and Vibration Control,” SPIE on Smart Structures and Materials: Passive Damping and Isolation, 3989: 259-269.
[3] Park, C. H., and Inman, D. J., (2003), “Enhanced piezoelectric shunt design,” Shock and Vibration, 10(2): 127-133.
[4] Clark, W. W., (2000), “Vibration control with state-switched piezoelectric materials,” Journal of Intelligent Material Systems and Structures, 11(4): 263-271.
[5] Cunefare, K. A., De Rosa, S., Sadegh, N., and Larson, G., (2000), “State-switched absorber for semi-active structural control,” Journal of Intelligent Material Systems and Structures, 11(4): 300-310.
[6] Richard, C., Guyomar, D., Audigier, D., and Ching, G., (1998), 'In Semi-passive damping using continuous switching of a piezoelectric device,' SPIE on Smart Structures and Materials: Passive Damping and Isolation, 104-111.
[7] Richard, C., Duyomar, D., Audigier, D., and Bassaler, H., (2000), 'Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor,' SPIE on Smart Structures and Materials: Passive Damping and Isolation, WA: 288-299.
[8] Lefeuvre, E., Badel, A., Richard, C., and Guyomar, D., (2006), “Semi-passive Piezoelectric Structural Damping by Synchronized Switching on Voltage Sources,” Journal of Intelligent Material Systems and Structures.
[9] Liu, Y. P., Vasic, D., Costa, F, Wu, W. J., Lee, C. K., (2008),”Velocity-Controlled Switching Piezoelectric Damping based on Maximum Power Factor Tracking and Work Cycle Observation,” 19th International Conference on Adaptive Structures and Technologies.
[10] Balas, M. J., (1979), “Direct Output-Feedback Control of Large Space Structures,” Journal of the Astronautical Sciences, 27(2): 157-180.
[11] Halim, D., and Moheimani, S. O. R., (2001), “Spatial resonant control of flexible structures - Application to a piezoelectric laminate beam,” IEEE Transactions on Control Systems Technology, 9(1): 37-53.
[12] Fanson, J. L., and Caughey, T. K., (1990), “Positive Position Feedback-Control for Large Space Structures,” Aiaa Journal, 28(4): 717-724.
[13] Cheng, C. C., and Lin, C. Y., (2007), private communication.
[14] Hagood, N., and Von Flotow, A., (1991), “Damping of structural vibrations with piezoelectric materials and passive electrical networks,” Journal of Sound and Vibration. 146(2): 243-268.
[15] 吳朗,(1994),“電子陶瓷:壓電陶瓷”,全欣資訊圖書股份有限公司。
[16] Katz, H. W., (1959), “Solid state magnetic and dielectric devices,” Wiley, 94-126
[17] Lee, C. K., (1987), “Piezoelectric Laminates for Torsion and Bending Modal Control: Theory and Experiment,” Ph.D. Dissertation, Institute of Theoretical and Applied Mechanicals, Cornell University.
[18] Lee, C. K., Chiang, W. W., and O'Sullivan, T. C., (1991), “Piezoelectric Modal Sensor/Actuator Pairs for Critical Active Damping Vibration Control,” Journal of Acoustical Society of America, Vol. 90, No.1, pp. 374-384.
[19] Meitzler, A. H., Berlincourt, D., Welsh, F. S., Tiersten, H. F., Coquin, G. A., and Warner, A. W., (1987), “ANSI/IEEE standard 176,” IEEE Standard on Piezoelectricity.
[20] Wada, Y., and Hayakawa, R., (1976), “Piezoelectricity and Pyroelectricity of Polymers,” Japanese Journal of Applied physics, Vol. 15, No. 11, pp. 1041-2057
[21] Mason, W. P., (1948), “Electromechanical Transducers and Wave Filters,” 2nd Edn. New York: Van Nostrand.
[22] Van Dyke, K. S., (1925), “The electric network equivalent of a piezoelectric resonator,” In: Physical Review. American Institute of Physics, Vol. 25, 895A.
[23] Mason, W. P., (1950), “Piezoelectric Crystals and Their Application to Ultrasonics,” New York: Van Nostrand.
[24] Cady, W. G., (1922), “The piezo-electric resonator,” In: Proceeding of The Institute of Radio Engineers, Vol. 10, 83–114.
[25] Von Hippel, A., (1858), “Handbook of Physics.” Chapter 7, Dielectrics, 2nd edn. Condon, E.U. and Odishaw, H. (eds.), New York: McGraw-Hill, pp. 4(102)–4(108).
[26] 梁適安,(2008),”交換適電源供應器之理論與實務設計,修訂版,”全華圖書股份有限公司,pp. 130-152。
[27] Chang, K. T., (2005), 'Transient response analysis of a Rosen-type piezoelectric transformer and its applications,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, 52(9): 1534-1545B.
[28] McConnell, K. G., (1995), 'Vibration testing theory and practice,' John Wiley and Sons, New York.
[29] Timoshenko, S., (1961), 'Vibration problems in engineering,' D.Van Nostrand company, INC, princeton, New Jersy, pp. 24.
[30] Richard, C., Guyomar, D., Audigier, D., Bassaler, H., (2000), 'Enhanced semi passive damping using continous switching of a piezoelectric device on an inductor, ' Smart Sturctures and Materials 2000 : Damping and Isolation, Vol. 3989, pp. 288-299.
[31] Badel, A., Sebald, G., Guyomar, D., Lallart, M., Lefeurve, E., Richard, C., Qiu, J., (2006), 'Piezoelectric vibration control by synchronized switching on adaptive voltage sorrces : Toward wideband semi-active damping, 'Journal of Acoustic Society of America, pp. 2815-2825.
[32] Hollkamp, J. J., 'A Self-Tuning Piezoelectric Vibration Absorber, 'Journal of Intelligent Material Systems and Structures, Vol. 5 pp. 559-566.
[33] Niederberger, D., Fleming, A. J., Moheimani, S. O. R., Morari, M., (2004), 'Adaptive multi-mode resonant piezoelectric shunt damping,' Institute of Physics Publishing : Smart Material and Structures, pp. 1025-1035.
[34] Fleming, A. J., Moheimani, S. O. R., (2003), 'Adaptive piezoelectric shunt damping,' Institute of Physics Publishing : Smart Material and Structures, pp. 36-48.
[35] Liu, Y. P., Vasic, D., Costa, F., Wu, W. J., Lee, C. K., (2009), ”Velocity-Controlled Switching Piezoelectric Switching Energy Harvesting Device,” International Conference on Renewable Energies and Power Quality(ICREPQ’09).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44910-
dc.description.abstract論文中利用壓電材料其電能與機械能間轉換的特性,針對其後端介面控制電路引進交換性電源供應器的設計思維,並著重結構在暫態部分的振動控制,以提昇智慧型結構振動控制之性能。當受控結構的操作頻率改變或是振動訊號大小不同時,其控制電路的設計也會有所不同。本論文中會以懸臂樑和超音波感測器(倒車雷達),分別代表操作頻率為低頻和高頻的兩種不同結構類型進行主動振動控制。 在控制電路設計的部分,本論文首先提出半主動式振動控制,藉由在驅動倒車雷達的驅動訊號中加入部分的控制訊號,以將其殘餘的振動能量(殘響)快速的消散於電子元件中。為了使控制電路能因應不同受控結構都能有效的運作,引入以往應用於低頻振動控制的同步切換式電路,包括電感式同步切換電路、電壓式同步切換電路和速度控制切換電路,於超音波傳感器中以降低其殘響訊號。 然而同步切換式控制電路中的外加控制電壓源在倒車雷達上的應用,當結構的振動訊號較小時,其外加電壓源會造成能量回流和雜訊等穩定度的問題。為改善此缺點,本論文進而提出自適性電壓源的設計。設計架構中以一個外加電容取代原始控制電路中的電壓源,使其在結構振動時預先擷取能量並存在此電容之中,並在暫態振動控制中以此電容電壓進行控制,由於其電容電壓值會隨著振動訊號減少而降低,進而達到隨著振動位移訊號變化,控制電壓值也隨著變化的設計,其電容值可最佳化設計成振動停止時電容電壓也放電至零電壓。最終再利用自適性電壓源控制電路中的全橋電路,使控制電路同時具有驅動倒車雷達至發送超音波和殘響控制的功能。 在論文中,首先進行理論分析以了解並驗證電路設計的可行性,並透過電路模擬軟體,配合量測所得使用壓電材料的等效電路以進行實驗結果的模擬,最後再實際架設實驗,以實驗結果驗證電路設計的可行性及其控制效果。zh_TW
dc.description.abstractUtilizing the characteristic of piezoelectric trasducer, which can covert electric energy and mechanical energy back and forth, this thesis focuses on the design of vibration control circuit connected with the piezoelectric transducer using the design concepts in switching power supply and aim at pursuing active vibration control in transient state. The goal is to achieve damping control in smart structures. The design of control circuit will be quite different when the operation frequency or the vibration amplitude of the structure to be controlled is different. Cantilever beams and ultrasonic sensors (used on automobile parking assistant system) will be used as the structure to be controlled in this thesis, which represent the platform of interest for low and high operation frequencies. For the design of interfacing control circuits, the semi-active damping control method was first purposed. This algorithm added an extra control signal into the original driving circuit of the parking sensor so as to damp the residual vibration energy by dissipating the unwanted energy through the electronic components efficiently while the structure is in transient states (reverberation). In order to have the active switching control circuit to work under any kinds of controlled structure and operating conditions, the synchronized switching damping control (SSD) which usually adopted in low frequency damping control is applied on ultrasonic sensor. These circuits include synchronized switch damping with an inductor (SSDI), synchronized switching damping with voltage sources (SSDV), and velocity-controlled switching piezoelectric damping (VSPD). All these methods will be examined in this thesis. Since the extra voltage source in SSD will cause stability problems due to the energy flowed back and the extra noises on the circuit, the design of an adaptive voltage
v
source is then purposed. In this design, an extra capacitor was added to replace the extra voltage source. The energy needed for the extra voltage source within the control circuit can be provided by the capacitor and the energy stored can be harvested from the structure vibration energy. Taking into consideration that the voltage of capacitor will vary with the the vibration signal, the optimized design for the capacitor is that the capacitor voltage will be discharged completely at the same time the vibration died out. Finally, a full-bridge circuit based adaptive control circuit that can drive the parking sensor and also perform active damping control on the residual vibration is proposed and verified in this thesis. In this thesis, theoretical analysis will first be conducted to check the viability of the circuit design. The circuit simulator is then used to simulate the experimental results before the real experiment. Finally, the completed experiment setup is then used to further verify and to benchmark the damping performance with respect to all other control methods.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:58:04Z (GMT). No. of bitstreams: 1
ntu-99-R97543016-1.pdf: 4800549 bytes, checksum: d635b27781a20d1d6b98381de15fe489 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………..… #
誌謝…………………………………………………………………………………..…. i
中文摘要……………………………………………………….......................……..… iii
英文摘要……………………………………………...……………......................…… iv
目錄……………………………………….……..………….…………………….…… vi
圖目錄.............................................................................................................................. x
表目錄............................................................................................................................ xv
第一章 緒論.................................................................................................................. 1
1.1研究動機............................................................................................................... 1
1.2論文目標............................................................................................................... 8
1.3論文架構............................................................................................................... 9
第二章 簡介................................................................................................................ 11
2.1壓電材料特性.................................................................................................... 11
2.2壓電常數............................................................................................................. 14
2.3壓電本構方程式................................................................................................. 16
2.4壓電機電耦合係數............................................................................................. 20
2.5壓電等效電路..................................................................................................... 22
第三章 返馳式轉換器設計........................................................................................ 24
3.1返馳式轉換器理論與架構................................................................................. 24
3.2返馳式轉換器之電路設計................................................................................. 27
3.3理論分析............................................................................................................. 31
3.3.1穩態分析(steady state analysis) ................................................................ 31
3.3.2暫態分析(transient state analysis) ............................................................ 33
3.4實驗結果模擬..................................................................................................... 39
3.5實驗結果與討論................................................................................................. 43
3.5.1實驗架設.................................................................................................... 43
3.5.2實驗結果.................................................................................................... 45
3.5.3實驗結果討論............................................................................................ 46
3.6小結與問題討論................................................................................................. 47
第四章 交換式振動控制............................................................................................ 49
4.1簡介..................................................................................................................... 49
4.2理論模型建立..................................................................................................... 50
4.3同步切換(SSD)振動控制................................................................................... 54
4.3.1電感式同步切換阻尼系統(SSDI)............................................................ 54
4.3.2電壓式同步切換阻尼系統(SSDV).......................................................... 62
4.3.3速度控制切換阻尼系統(VSPD).............................................................. 67
4.3.4原始系統、SSDI、SSDV和VSPD綜合比較............................................ 71
4.4實驗模型建立與結果模擬................................................................................. 76
4.4.1等校電路分析............................................................................................ 76
4.4.2模擬架設與結果........................................................................................ 79
4.4.3模擬結果討論............................................................................................ 83
4.5實驗架設............................................................................................................. 84
4.5.1分流電路.................................................................................................... 85
4.5.2懸臂樑系統................................................................................................ 88
4.5.3倒車雷達系統............................................................................................ 90
4.6實驗結果與討論................................................................................................. 91
4.6.1實驗結果.................................................................................................... 92
4.6.2實驗討論.................................................................................................... 97
4.7小結與問題討論................................................................................................. 98
第五章 自適性電壓源設計........................................................................................ 99
5.1電路設計與分析................................................................................................. 99
5.2實驗模型建立與結果模擬............................................................................... 104
5.2.1實驗模型建立…...................................................................................... 105
5.2.2模擬結果討論.......................................................................................... 106
5.3實驗設計與結果討論....................................................................................... 109
5.3.1實驗架設.................................................................................................. 109
5.3.2實驗結果.................................................................................................. 110
5.3.3實驗結果討論.......................................................................................... 114
5.4電容CA充電時間設計...................................................................................... 114
5.5倒車雷達系統實驗設計與結果討論............................................................... 116
5.5.1實驗架設.................................................................................................. 117
5.5.2實驗結果與討論...................................................................................... 118
5.6結合倒車雷達驅動電路測試........................................................................... 120
5.6.1倒車雷達驅動電路簡介.......................................................................... 121
5.6.2實驗架設.................................................................................................. 122
5.6.3實驗結果與討論...................................................................................... 123
5.7小結與問題討論............................................................................................... 125
第六章 結合驅動及振動控制之控制電路設計...................................................... 127
6.1電路設計............................................................................................................ 127
6.1.1降壓型轉換器(BUCK converter)............................................................ 127
6.1.2結合Adaptive VSPD和降壓型轉換器之電路...................................... 129
6.2實驗模型建立與結果模擬............................................................................... 131
6.2.1實驗模型建立.......................................................................................... 131
6.2.2模擬結果討論.......................................................................................... 133
6.3實驗設計與結果討論……............................................................................. 134
6.3.1實驗架設.................................................................................................. 135
6.3.2實驗結果.................................................................................................. 136
6.3.3實驗結果討論.......................................................................................... 139
6.4小結.................................................................................................................. 140
第七章 結論與未來展望.......................................................................................... 141
7.1結論................................................................................................................... 141
7.2未來展望........................................................................................................... 143
參考文獻...................................................................................................................... 144
附錄A 能量循環之實驗結果................................................................................... 148
dc.language.isozh-TW
dc.subject切換式振動控制zh_TW
dc.subject振動控制zh_TW
dc.subject超聲波感測器zh_TW
dc.subject半主動式zh_TW
dc.subject半被動式zh_TW
dc.subjectswitching dampingen
dc.subjectdamping controlen
dc.subjectultrasonic sensoren
dc.subjectsemi-activeen
dc.subjectsemi-passiveen
dc.title交換式電源於智慧型結構控制的實現與應用zh_TW
dc.titleDesign and Construction of Switching Power for Smart Structure Damping Controlen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor吳文中
dc.contributor.oralexamcommittee陳秋麟,謝志文
dc.subject.keyword振動控制,超聲波感測器,半主動式,半被動式,切換式振動控制,zh_TW
dc.subject.keyworddamping control,ultrasonic sensor,semi-active,semi-passive,switching damping,en
dc.relation.page150
dc.rights.note有償授權
dc.date.accepted2010-05-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved