請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44903完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何國川 | |
| dc.contributor.author | Chih-Yu Hsu | en |
| dc.contributor.author | 徐志宇 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:57:52Z | - |
| dc.date.available | 2013-06-15 | |
| dc.date.copyright | 2010-06-15 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-03 | |
| dc.identifier.citation | [1] Online Etymology Dictionary, web page: http://www.etymonline.com (1/23/2010).
[2] IUPAC, “Chemically modified electrodes: recommended terminology and definitions (IUPAC recommendations 1997),” Pure & Applied Chemistry, 69 (1997) 1317. [3] A. J. Bard and L. R. Faulkner, “Electrochemical methods: fundamental and applications,” 2nd ed., John Wiley & Sons, New York, (2001). [4] A. J. Bard, “Integrated chemical systems: a chemical approach to nanotechnology,” John Wiley & Sons, New York, NY, (1994). [5] R. W. Murray, “Chemically modified electrodes,” Accounts of Chemical Research, 13 (1980) 135. [6] T. Minami. “Transparent conducting oxide semiconductors for transparent electrodes,” Semiconductor Science and Technology, 20 (2005) S35. [7] P. M. S. Monk, “The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4’-Bipyridine,” John Wiley & Sons, New York, NY, (1998). [8] H. Kamagawa, T. Suzuki, “Organic solid photochromism via a photoreduction mechanism. Photochromism of viologen crystals,” Journal of the Chemical Society, Chemical Communications, (1985) 525. [9] L. Michaelis, E. S. Hill, “The viologen indicators,” The Journal of General Physiology, 16 (1933) 859. [10] C. J. Schoot, J. J. Ponjee, H. T. van Dam, R. A. dan Doorn, P. T. Bolwijn, “New electrochromic memory display,” Applied Physical Letters, 23 (1973) 64. [11] G. Lavey, T. W. Ebbesen, “Methyl viologen radical reactions with several oxidizing agents,” The Journal of Physical Chemistry, 87 (1983) 829. [12] K. Belinko, “Electrochemical studies of viologen system for display applications,” Applied Physical Letters, 29 (1976) 363. [13] M. Heyrovsky, “Effect of light upon electroreduction of 4,4'-bipyridyl and methyl viologen in aqueous-solutions,” Journal of Chemical Society-Faraday Transaction 1, 82 (1986) 585. [14] M. Datta, R. E. Hansson, J. J. Freeman, “In Situ resonance Raman spectroscopic characterization of electrogenerated methyl viologen radical cation on carbon electrode,” Applied Spectroscopy, 40 (1986) 251. [15] H. J. Byker, “Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein, and uses thereof,” United States Patent, 4,902,108 (1990). [16] L. A. Summers, “The bipyridinium herbicides,” Academic Press, London, (1980). [17] A. I. Krasna, “Acridines, deazaflavins, and tris(2,2'-bipyridine)ruthenium as catalysts for photoproduction of hydrogen from organic-compounds,” Photochemistry and Photobiology, 31 (1980) 75. [18] T. Saika, T. Iyoda, T. Shimidzu, “Electropolymerization of bis(4-cyano-1-pyridinio) derivatives for the preparation of polyviologen films on electrodes,” Bulletin of the Chemical Society of Japan, 66 (1993) 2054. [19] K. Kamata, T. Suzuki, T. Kawai, T. Iyoda, “Voltammetric anion recognition by a highly cross-linked polyviologen film,” Journal of Electroanalytical Chemistry, 473 (1999) 145. [20] R. N. Dominey, T. J. Lewis, M. S. Wrighton, “Synthesis and characterization of a benzylviologen surface-derivatizing reagent - N,N'-bis[p-(trimethoxysilyl)benzyl]-4,4'-bipyridinium dichloride,” The Journal of Physical Chemistry, 87 (1983) 5345. [21] J. A. Bruce, M. S. Wrighton, “Electrostatic binding of electroactive and nonelectroactive anions in a surface-confined, electroactive polymer: selectivity of binding measured by Auger spectroscopy and cyclic voltammetry,” Journal of The American Chemical Society, 104 (1982) 74. [22] H. L. Landrum, R. T. Salmon, F. M. Hawkridge, “Surface-modified gold minigrid electrode which heterogeneously reduces spinach ferredoxin,” Journal of The American Chemical Society, 99 (1977) 3154. [23] H. C. de Long, D. A. Buttry, “Ionic interactions play a major role in determining the electrochemical behavior of self -assembling viologen monolayers,” Langmuir, 6 (1990) 1319. [24] G. Bidan, A. Deronzier, J. C. Moutet, “Electrochemical coating of an electrode by a poly(pyrrole) film containing the viologen (4,4'-bipyridinium) system,” Journal of the Chemical Society, Chemical Communications, (1984) 1185. [25] Y. C. Hsu, K. C. Ho, “The anionic effect on the intercalation and spectral properties of poly(butyl viologen) films,” Journal of New Materials for Electrochemical Systems, 8 (2005) 49. [26] H. Shirakawa, E. J. Lewis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers - halogen derivatives of polyacetylene, (CH)x,” Journal of the Chemical Society, Chemical Communications, (1977) 578. [27] L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Advanced Materials, 12 (2000) 481. [28] A.G. Bayer, European Patent, 339340 (1988). [29] F. Jonas, L. Schrader, “Conductive modifications of polymers with polypyrroles and polythiophenes,” Synthetic Metals, 41-43 (1991) 831. [30] G. Heywang, F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Advanced Materials, 4 (1992) 116. [31] L. B. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, J. R. Reynolds, “Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives,” Advanced Materials, 15 (2003) 855. [32] M. Dietrich, J. Heinze, G. Heywang, F. Jonas, “Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes,” Journal of Electroanalytical Chemistry, 369 (1994) 87. [33] G. A. Sotzing, J. R. Reynolds, P. J. Steel, “Multiply colored electrochromic carbazole-based polymers,” Advanced Materials, 9 (1997) 795. [34] G. A. Sotzing, J. R. Reynolds, P. J. Steel, “Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers,” Chemistry of Materials, 8 (1996) 882. [35] C. L. Gaupp, D. M. Welsh, J. R. Reynolds, “Poly(ProDOT-Et-2): A high-contrast, high-coloration efficiency electrochromic polymer,” Macromolecular Rapid Communications, 23 (2002) 885. [36] D. M. Welsh, A. Kumar, E. W. Meijer, J. R. Reynolds, “Enhanced contrast ratios and rapid switching in electrochromics based on poly(3,4-propylenedioxythiophene) derivatives,” Advanced Materials, 11 (1999) 1379. [37] I. Schwendeman, J. Hwang, D. M. Welsh, D. B. Tanner, J. R. Reynolds, “Combined visible and infrared electrochromism using dual polymer devices,” Advanced Materials, 13 (2001) 634. [38] D. M. Welsh, K. J. Kloeppner, L. Madrigal, M. R. Pinto, K. S. Schanze, K. A. Abboud, D. Powell, J. R. Reynolds, “Regiosymmetric dibutyl-substituted poly(3,4-propylenedioxythiophene)s as highly electron-rich electroactive and luminescent polymers,” Macromolecules, 35 (2002) 6517. [39] J. Y. Kim, H. Y. Woo, J. W. Baek, T. W. Kim, E. A. Song, S. C. Park, and D. W. Ihm, “Polymer-dispersed liquid crystal devices using highly conducting polymers as electrodes,” Applied Physical Letters, 92 (2008) 183301. [40] Y. Saito, N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada. S. Yanagida, “Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor,” Electrochemical Communications, 6 (2004) 71. [41] T. Y. Kim, J. E. Kim, Y. S. Kim, T. H. Lee, W. J. Kim, K. S. Suh, “Preparation and characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) using partially sulfonated poly(styrene-butadiene-styrene) triblock copolymer as a polyelectrolyte,” Current Applied Physics, 9 (2009) 120. [42] P. C. Nien, T. S. Tung, K. C. Ho, “Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly(3,4-ethylenedioxythiophene) film,” Electroanalysis, 18 (2006) 1408. [43] S. S. Kumar, C. S. Kumar, J. Mathiyarasu, K. L. Phani, “Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: Nanocomposite formation, stability, and application in catalysis,” Langmuir, 23 (2007) 3401. [44] M. C. Lefebvre, Z. G. Qi, P. G. Pickup, “Electronically conducting proton exchange polymers as catalyst supports for proton exchange membrane fuel cells - Electrocatalysis of oxygen reduction, hydrogen oxidation, and methanol oxidation,” Journal of the Electrochemical Society, 146 (1999) 2054. [45] J. Y. Liao, K. C. Ho, “A photoelectrochromic device using a PEDOT thin film,” Journal of New Materials for Electrochemical Systems, 8 (2005) 37. [46] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. B | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44903 | - |
| dc.description.abstract | 本論文主要探討兩種高分子薄膜材料,聚紫精(PBV)及PProDOT-Et2之電化學特性與光電方面之應用。
在第一部份(第三章與第四章)針對聚紫精於電化學反應時之離子進出現象透過掃瞄式電化學顯微儀(SECM)與電化學石英震盪微天平(EQCM)進行分析。透過SECM可以探討於聚紫精薄膜/電解液介面之Fe(CN)64-離子與氯離子之離子交換狀況。而透過EQCM的量測則可以計算出聚紫精薄膜於氧化還原反應時之離子進出通量。因此可以得知Fe(CN)64-離子約在-0.43 V (vs. Ag/AgCl) 之操作電壓下會離開聚紫精薄膜,而其通量則會在-0.55 V左右達到最大值,也可以因此而提出離子交換之反應機制。另一方面,氯離子之進出通量則可計算出每個氯離子會平均攜帶約24.8個水分子同時進出。而在每個電位之下的水分子對離子之比例也可以求得。根據以上探討,可以決定任何化學修飾電極之氧化還原機制。 第二部份(第五章與第六章)針對PProDOT-Et2之電子傳遞特性透過電化學組抗分析與旋轉電極進行探討。當PProDOT-Et2薄膜於具有氧化還原對之電解液中,兩者之間所發生的電子轉移現象受到不同氧化還原對以及濃度比例而影響其速率常數(k0)。對於碘離子,該速率常數為1.3×10-3 cm s-1較高於溴離子之2.8×10-4 cm s-1。而由於PProDOT-Et2本身具備之電致色變性質,因此會在接觸氧化還原對之後使薄膜因為反應而著色,而不同氧化還原對之電子轉移速率常數便會造成不同的著色速度。為了達到較佳之光學調幅,在本研究中選用了Br-/Br3-氧化還原對,並進一步探討添加Br2之後之影響。經過調整Br-/Br3-氧化還原對的濃度比例後,可以瞭解當正逆反應速率平衡時,PProDOT-Et2薄膜可以不受到氧化還原對之電子轉移影響,而完整表現出其原有之電致色變性質。另一方面,有關於PProDOT-Et2高分子之電容表現,我們發現該性質與高分子膜之電子傳遞特性具相關性。PProDOT-Et2的電子傳遞的速率常數(ks)可以求得為0.49 s-1,而該薄膜於一定析鍍電量時則可以達到6.5 F cm-2之特徵電容值。根據此結果,我們開發出一全新的光超級電容元件用以同步於光能轉電能之後將電能儲存,該光超級電容可以達到特徵電 容值為0.48 F cm-2,光充電電壓為0.75 V,以及能量儲存效率為0.6%。 在本論文之最後一部份(第七章與第八章),針對聚紫精與PProDOT-Et2之光電應用進行開發,於電致色變元件與光電致色變元件。此全新之電致色變元件由聚紫精與普魯士藍所組成,並達到高對比之效果。該元件在波長為550 nm之下之著色效率達到約105 cm2/C,並具有68%至4%之穿透度變化。在光電致色變元件方面,則利用PProDOT-Et2電致色變薄膜與FL dye1-二氧化鈦之光電極所組成,並選用以及最適化具有Br-/Br3- 氧化還原對之電解液配方,使得該元件可以在陽光之照射下達到無須外加電能、優異的光學調幅、高反應速度以及良好的穩定性。該光電致色變元件在波長620 nm下具有32.0%的穿透度變化,並在經過100圈連續操作測試後僅衰退了5.3%,其每圈之反應時間皆少於10秒。我們亦針對此光電致色變元件系統提出初步的設計方程式,藉以瞭解未來最適化的條件與瞭解關鍵的元素。 | zh_TW |
| dc.description.abstract | In this dissertation, the main purpose is to investigate the electrochemical behaviors and electro-optical applications of two different polymer thin films, poly(butyl viologen) (PBV) and poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]dioxepine) (PProDOT-Et2).
In the first part (Chapters 3 and 4), the ion transport phenomena of PBV film is studied by scanning electrochemical microscopy (SECM) and electrochemical quartz crystal microbalance (EQCM) analysis. The ion exchange behavior between Fe(CN)64- and Cl- at the interface of PBV film/electrolyte can be probed using a SECM. The ion flux during the redox reaction of PBV can be calculated after obtaining the EQCM data. It is thus realized that the release of Fe(CN)64- begins at ca. -0.43 V (vs. Ag/AgCl) and reaches a maximum flux at ca. -0.55 V during the reduction of a PBV film. The ion exchange mechanism can also be proposed. As for the ion flux of Cl- within the PBV film, the average numbers of accompanying water are calculated to be about 24.8 per Cl-. The instantaneous water to anion molar ratios at any potential can also be obtained. Based on this investigation, the mechanism of the redox behavior of any chemically modified electrodes can be realized. In the second part (Chapters 5 and 6), the electron transfer characteristics of PProDOT-Et2 is analyzed by electrochemical impedance spectroscopy (EIS) and rotating disk electrode (RDE) technique. In the presence of redox couple, the electron transfer at the PProDOT-Et2 thin film shows a standard heterogeneous rate constant (k0) that depends on the kind of redox couples and their concentration ratios. The k0 value for I-/I3- is 1.3×10-3 cm s-1, which is higher than that for Br-/Br3- of 2.8×10-4 cm s-1. Due to the electrochromic nature, the PProDOT-Et2 films are darkened in the environment of redox couples. The k0 values under different redox couples result in different darkened rates. In order to achieve better optical attenuation, Br-/Br3- is selected for further investigation by adding Br2 into the redox electrolyte. By changing the concentration ratio of Br-/Br3- in the redox electrolyte solution, it is realized that once the forward and backward electron transfer rate reaches balance, PProDOT-Et2 film can fully exhibit its electrochromic property. As for the capacitance performance of PProDOT-Et2 thin film, it is affected by the electron transfer of the polymer. The heterogeneous electron transfer rate constant (ks) of PProDOT-Et2 film is 0.49 s-1 and the specific capacitance achieved ca. 6.5 F cm-2. Based on this, a novel photo-supercapacitor (PSC) was fabricated to store solar energy in-situ with a specific capacitance of 0.48 F cm-2, a photocharge voltage of 0.75 V and an energy storage efficiency of 0.6%. In the last part (Chapters 7 and 8), the electro-optical applications of PBV and PProDOT-Et2 are incorporated into an electrochromic device (ECD) and a photoelectrochromic device (PECD), respectively. The new ECD is fabricated with PBV and Prussian blue and has a good optical contrast. The coloration efficiency of this device exhibits ca. 105 cm2/C and the transmittance is changed from 68% to 4% at 550 nm. As for the PECD using the PProDOT-Et2 electrochromic film and the FL dye1-TiO2 photoactive layer, Br-/Br3- redox electrolyte is selected and optimized to obtain a self-powered PECD exhibiting exceptional optical attenuation of fast switching rate and stability under light illumination. The PECD exhibited a transmittance change of 32.0% under 620 nm initially and shows only 5.3% decay after a consecutive 100 cycles with a fast switching time less than 10 s. Simple design equations are also proposed to explain the optimization process and better understand the key elements in the PECDs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:57:52Z (GMT). No. of bitstreams: 1 ntu-99-F94524021-1.pdf: 6248724 bytes, checksum: 151b7d3d18300307109836f6497062da (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 I
摘要 III Abstract V Table of contents VII List of tables XII List of figures XIII Nomenclatures XIX Chapter 1 Introduction 1 1.1 Polymer thin film chemically modified electrodes (CMEs) 1 1.1.1 Polyviologens 3 1.1.1.1 Brief history of viologens 3 1.1.1.2 Surface-confined viologens 6 1.1.2 Poly(3,4-alkylenedioxythiophene)s (PXDOTs) 9 1.1.2.1 Brief history of PXDOTs 9 1.1.2.2 Potential developments of PXDOTs 12 1.2 Ionic and charge transport of CMEs 15 1.2.1 Equilibrium quartz crystal microbalance (EQCM) 16 1.2.2 Scanning electrochemical microscopy (SECM) 19 1.3 Electro-optical applications of CMEs 22 1.3.1 Electrochromic devices (ECDs) 24 1.3.2 Photoelectrochromic devices (PECDs) 29 1.3.2.1 Brief introduction to dye-sensitized solar cells 29 1.3.2.2 Progress on PECDs 32 1.3.3 Photocapacitors 35 1.4 Objective and framework of this dissertation 38 Chapter 2 Experimental 43 2.1 Preparation of PBV-modified electrodes 43 2.1.1 Chemicals 43 2.1.2 Electropolymerization of PBV 43 2.1.3 Characterization of PBV 44 2.2 Apparatus and procedure for SECM and EQCM analysis 45 2.2.1 SECM 45 2.2.2 EQCM 46 2.3 Fabrication of ECDs with PBV film 47 2.3.1 Chemicals and substrates 47 2.3.2 Deposition of Prussian blue (PB)-modified electrodes 47 2.3.3 Assembly of PBV-PB ECDs 48 2.3.4 Characterization of ECDs 48 2.4 Preparation of PProDOT-Et2-modified electrodes 49 2.4.1 Chemicals 49 2.4.2 Electropolymerization of PProDOT-Et2 49 2.4.3 Characterization of PProDOT-Et2 50 2.5 Fabrication of PECDs and photosupercapacitors (PSCs) 51 2.5.1 Chemicals 51 2.5.2 Preparation of photoactive electrodes 52 2.5.3 Assembly and characterization of PECDs 52 2.5.4 Assembly and characterization of PSCs 53 Chapter 3 A study of ion exchange at the poly(butyl viologen)-electrolyte interface by SECM 55 3.1 UV-vis spectrophotometric analysis 55 3.2 Stability and electrochemical properties of the Fe(CN)63-/4-/PBV system 58 3.3 SECM measurement environment investigation 65 3.4 SECM detection of the released species 66 3.5 Ion exchange process of the Fe(CN)64-/ PBV film 69 3.6 Summary 76 Chapter 4 Roles of anion and solvent transport during redox switching at a poly(butyl viologen) film studied by EQCM 77 4.1 Ion exchange 78 4.2 Anion effect 82 4.3 Ion transport behavior 84 4.3.1 Mass and charge balance 84 4.3.2 Molar flux 87 4.4 Summary 92 Chapter 5 Electron transfer mechanism and kinetic role of redox couples at PProDOT-Et2 thin films 93 5.1 Effect of different redox couples 93 5.2 Effect of Br2 in electrolyte 99 5.3 Mechanism analysis 102 5.4 Summary 110 Chapter 6 Electron transfer kinetics on the capacitance of PXDOT thick films and their applications 111 6.1 Electrochemical properties of PEDOT and PProDOT-Et2 films 111 6.2 Capacitance behavior of PEDOT and PProDOT-Et2 films 114 6.3 Applications 119 6.3.1 Performance on supercapacitor 119 6.3.2 Performance on photo-supercapacitor (PSC) 121 6.4 Summary 124 Chapter 7 A high contrast complementary electrochromic device based on poly(butyl viologen) and Prussian blue 125 7.1 Studies of PBV and PB thin-film electrodes 125 7.1.1 Electrochemical properties 125 7.1.2 Absorbance spectra and transmittance responses 128 7.1.3 Coloration efficiency 131 7.2 Performance of PBV-PB ECD 134 7.2.1 Transmittance response and cyclic voltammograms 134 7.2.2 Absorbance spectra and coloration efficiency 135 7.2.3 Cycling and at-rest stability 138 7.3 Summary 140 Chapter 8 A novel fast-switching dye-sensitized photoelectrochromic device based on an organic dye and PProDOT-Et2 thin film 141 8.1 Effect of different redox couples 141 8.2 Effect of Br2 in electrolyte 146 8.3 Design equations for the PECDs 152 8.3.1 Models and theoretical calculations 152 8.3.2 Properties of the electrochromic and photoactive layer 155 8.3.3 Performances of the PECDs 157 8.3.4 Verification of design equations 160 8.4 Summary 164 Chapter 9 Conclusions and suggestions 165 9.1 Conclusions 165 9.1.1 The ionic transport phenomena and electrochromic application of poly(butyl viologen) film 165 9.1.2 The electron transfer kinetics and photoelectrochromic and photo-supercapacitor application of PProDOT-Et2 film 166 9.2 Suggestions and prospects 168 Chapter 10 References 169 Appendix A A new stable Fe(CN)63-/4--immobilized poly(butyl viologen) modified electrode for dopamine determination 191 A.1 Introduction 191 A.2 Experimental 192 A.3 Results and discussion 193 A.3.1 Electrochemical oxidation of dopamine 193 A.3.2 Kinetic parameters for dopamine/Fe(CN)63-/4- 196 A.4 Summary 202 A.5 References 202 Appendix B Curriculum vitae 207 | |
| dc.language.iso | en | |
| dc.subject | 氧化還原對 | zh_TW |
| dc.subject | 光電致色變元件 | zh_TW |
| dc.subject | 高分子薄膜 | zh_TW |
| dc.subject | 離子進出 | zh_TW |
| dc.subject | 電致色變 | zh_TW |
| dc.subject | 電子傳遞 | zh_TW |
| dc.subject | 電容值 | zh_TW |
| dc.subject | redox couple | en |
| dc.subject | photoelectrochromic device | en |
| dc.subject | polymer thin film | en |
| dc.subject | ion transport | en |
| dc.subject | electrochromism | en |
| dc.subject | electron transfer | en |
| dc.subject | capacitance | en |
| dc.title | 高分子薄膜之電化學及其應用:離子進出、電子傳遞與光電元件 | zh_TW |
| dc.title | Electrochemistry on Polymer Thin Films and Their Applications:Ion Transport, Electron Transfer and Electro-Optical Devices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林建村,顏溪成,周澤川,戴子安,林正嵐 | |
| dc.subject.keyword | 電容值,電子傳遞,電致色變,離子進出,高分子薄膜,光電致色變元件,氧化還原對, | zh_TW |
| dc.subject.keyword | capacitance,electron transfer,electrochromism,ion transport,polymer thin film,photoelectrochromic device,redox couple, | en |
| dc.relation.page | 213 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-06-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 6.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
