請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44896完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂勝春 | |
| dc.contributor.author | Chih-Ta Wang | en |
| dc.contributor.author | 王智達 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:57:40Z | - |
| dc.date.available | 2010-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-07 | |
| dc.identifier.citation | Abrink M, Ortiz JA, Mark C, Sanchez C, Looman C, Hellman L, Chambon P, Losson R. Conserved interaction between distinct Krüppel-associated box domains and the transcriptional intermediary factor 1 beta. Proc Natl Acad Sci U S A. 2001; 98:1422-6.
Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology. 2008; 48:2047-63. Cammas F, Herzog M, Lerouge T, Chambon P, Losson R. Association of the transcriptional corepressor TIF1beta with heterochromatin protein 1 (HP1): an essential role for progression through differentiation. Genes Dev. 2004; 18:2147-60. Cammas F, Mark M, Dollé P, Dierich A, Chambon P, Losson R. Mice lacking the transcriptional corepressor TIF1beta are defective in early postimplantation development. Development. 2000; 127:2955-63. Cammas F, Oulad-Abdelghani M, Vonesch JL, Huss-Garcia Y, Chambon P, Losson R. Cell differentiation induces TIF1beta association with centromeric heterochromatin via an HP1 interaction. J Cell Sci. 2002; 115:3439-48. Chang CW, Chou HY, Lin YS, Huang KH, Chang CJ, Hsu TC, Lee SC. Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1. BMC Mol Biol. 2008; 9:61. Chang CW. Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1. National Taiwan University Doctor Dissertaton. 2008 Jun. Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008; 105:10762-7. Ferrari S. Protein kinases controlling the onset of mitosis. Cell Mol Life Sci. 2006; 63:781-95. Filhol O, Cochet C. Protein kinase CK2 in health and disease: Cellular functions of protein kinase CK2: a dynamic affair. Cell Mol Life Sci. 2009;66:1830-9. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher FJ 3rd. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 1996; 10:2067-78. Golsteyn RM, Mundt KE, Fry AM, Nigg EA. Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J Cell Biol. 1995; 129:1617-28. Ho J, Kong JW, Choong LY, Loh MC, Toy W, Chong PK, Wong CH, Wong CY, Shah N, Lim YP. Novel breast cancer metastasis-associated proteins. J Proteome Res. 2009; 8:583-94. Kamitani S, Ohbayashi N, Ikeda O, Togi S, Muromoto R, Sekine Y, Ohta K, Ishiyama H, Matsuda T. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression. Biochem Biophys Res Commun. 2008; 370:366-70. Kim SS, Chen YM, O’Leary E, Witzgall R, Vidal M, Bonventre JV. A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. Proc Natl Acad Sci U S A. 1996; 93:15299-304. Kneubuehl HP. Thermo Scientific Open Biosystems Expression Arrest TRIPZ Lentiviral shRNAmir. OpenBiosystem. 2010. Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular tumors. Oncogene. 2006; 25:3778-86. Li X, Lee YK, Jeng JC, Yen Y, Schultz DC, Shih HM, Ann DK. Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression. J Biol Chem. 2007; 282:36177-89. Lin YS.The Functional analysis of TIF1beta on the regulation of cell cycle. National Taiwan University Master Thesis.2008 Jun. Mascle XH, Germain-Desprez D, Huynh P, Estephan P, Aubry M. Sumoylation of the transcriptional intermediary factor 1beta (TIF1beta), the Co-repressor of the KRAB Multifinger proteins, is required for its transcriptional activity and is modulated by the KRAB domain. J Biol Chem. 2007; 282:10190-202. Meng R, Al-Quobaili F, Müller I, Götz C, Thiel G, Montenarh M. CK2 phosphorylation of Pdx-1 regulates its transcription factor activity. Cell Mol Life Sci. 2010. Moosmann P, Georgiev O, Le Douarin B, Bourquin JP, Schaffner W. Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res. 1996; 24:4859-67. Okamoto K, Kitabayashi I, Taya Y. KAP1 dictates p53 response induced by chemotherapeutic agents via Mdm2 interaction. Biochem Biophys Res Commun. 2006; 351:216-22. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006; 127:635-48. Peng H, Begg GE, Schultz DC, Friedman JR, Jensen DE, Speicher DW, Rauscher FJ 3rd. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J Mol Biol. 2000; 295:1139-62. Petronczki M, Lénárt P, Peters JM. Polo on the Rise-from Mitotic Entry to Cytokinesis with Plk1. Dev Cell. 2008; 14:646-59. Rooney JW, Calame KL. TIF1beta functions as a coactivator for C/EBPbeta and is required for induced differentiation in the myelomonocytic cell line U937. Genes Dev. 2001; 15:3023-38. Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR, Fredericks WJ, Rauscher FJ 3rd. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol. 1999; 19:4366-78. Salaun P, Rannou Y, Prigent C. Cdk1, Plks, Auroras, and Neks: the mitotic bodyguards. Adv Exp Med Biol. 2008; 617:41-56. Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene. 2009 ; 28:2925-39. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002; 16:919-32. Sherr CJ, Roberts JM. Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999; 13:1501-12. Teufel A, Staib F, Kanzler S, Weinmann A, Schulze-Bergkamen H, Galle PR. Genetics of hepatocellular carcinoma. World J Gastroenterol. 2007; 13:2271-82. Toyoshima-Morimoto F, Taniguchi E, Shinya N, Iwamatsu A, Nishida E. Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature. 2001; 410:215-20. Tsuruma R, Ohbayashi N, Kamitani S, Ikeda O, Sato N, Muromoto R, Sekine Y, Oritani K, Matsuda T. Physical and functional interactions between STAT3 and KAP1. Oncogene. 2008; 27:3054-9. Underhill C, Qutob MS, Yee SP, Torchia J. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem. 2000; 275:40463-70. van Vugt MA, Medema RH. Getting in and out of mitosis with Polo-like kinase-1. Oncogene. 2005; 24:2844-59. Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis. 2007; 27:55-76. Wang C, Ivanov A, Chen L, Fredericks WJ, Seto E, Rauscher FJ 3rd, Chen J. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J. 2005; 24:3279-90. Epub 2005 Aug 18. White DE, Negorev D, Peng H, Ivanov AV, Maul GG, Rauscher FJ 3rd. KAP1, a novel substrate for PIKK family members, colocalizes with numerous damage response factors at DNA lesions. Cancer Res. 2006; 66:11594-9. Yang B, O’Herrin SM, Wu J, Reagan-Shaw S, Ma Y, Bhat KM, Gravekamp C, Setaluri V, Peters N, Hoffmann FM, Peng H, Ivanov AV, Simpson AJ, Longley BJ. MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res. 2007; 67:9954-62. Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol. 2006; 8:870-6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44896 | - |
| dc.description.abstract | TRIM28已知為含有KRAB單元(Krüpple-associated box)的zinc finger抑制子的共通輔助抑制子。它藉由和異染色質蛋白1、組蛋白甲基轉移酶SETDB1以及兩種含有修飾染色質和乙醯化組蛋白活性的複合物N-CoR1和NuRD所組成之蛋白質複合體協調KRAB負責的轉錄抑制。TRIM28協調的抑制複合物和異染色質的形成緊密地調控基因表現。除此之外,TRIM28也參與細胞增殖和細胞分化,並對於老鼠胚胎的發育不可或缺。然而,目前對於TRIM28在癌細胞生長與侵犯能力(例如肝癌) 中扮演的角色仍有待研究。在這篇研究中,我們發現TRIM28在肝癌組織中之表現量顯著上升,並可能與肝癌細胞的異常生長密切相關。在TRIM28後轉譯修飾對其功能之影響方面,例如TRIM28第824個胺基酸絲胺酸的磷酸化已知會參與DNA受損反應,而第473個胺基酸絲胺酸的磷酸化則被證明會調節TRIM28和異染色質蛋白1的結合以調控與細胞週期相關的基因表現。TRIM28第681個和第757個胺基酸絲胺酸在HeLa細胞中被發現有磷酸化修飾,但其對TRIM28之功能影響尚待釐清。我們產生了針對這兩個位置磷酸化的多株抗體,發現這兩個磷酸化都只出現在HeLa細胞有絲分裂的初期。我們發現第681個絲胺酸被突變成丙胺酸的突變株(S681A)在細胞分裂期間展現和野生型相同的行為:在有絲分裂初期會和濃縮的染色體分離,但在有絲分裂末期則會和鬆散的染色質重新結合。至於第757個絲胺酸的磷酸化,則發現會被Cdk1的抑制物Roscovitine抑制,這意味著Cdk1極可能為該絲胺酸的上游激酶。 | zh_TW |
| dc.description.abstract | TRIM28 (tripartite motif protein 28) is a corepressor for large family of Krüpple-associated box domain containing zinc finger transcription factors and coordinates KRAB-mediated transcription repression by recruitment of HP1 (heterochromatin protein1), histone methyltransferase SETDB1, and two chromatin-remodeling and histone deacetylation complexes N-CoR1 and NuRD. TRIM28-mediated repression complexes and heterochromatin formation are tightly coordinated leading to silencing of genes. Moreover, it was also reported that TRIM28 is essential for cell proliferation, differentiation and early embryonic development in mice. To study the relationship between the expression of TRIM28 and the growth and invasiveness of hepatocellular carcinoma (HCC), I performed immunohistochemical staining of clinical specimens. TRIM28 is overexpressed in HCC and is likely to involve in its abnormal growth characteristics. Post-translational modifications have important functional impacts on TRIM28. For example, phosphorylation of TRIM28/S824 was shown to be involved in DNA-damaged response while phosphorylation at S473 modulates its interaction with HP1 to differentially regulate cell cycle-related genes. Recently, the phosphorylation of S681 and S757 were identified in HeLa cells, but their functions remain unknown. We generated polyclonal antibodies against phosphorylated TRIM28/Ser681 and Ser757. These phosphorylation events appeared at prometaphase of HeLa cells. Similar to wild type TRIM28, S681A mutant dissociates from condensed chromosomes in prophase and re-associates with chromatin in anaphase. The potential function of phospho-S681 is discussed. The phosphorylation of S757 was completely abolished after Roscovitine treatment. It is likely that Cdk1 is responsible for the phosphorylation of S757. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:57:40Z (GMT). No. of bitstreams: 1 ntu-99-R95448004-1.pdf: 5777173 bytes, checksum: 613c9948b00c061318025264ae2e12b1 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 ii
中文摘要 iii Abstract iv Introduction 1 Materials and Methods 8 Antibodies 8 Immunohistochemical staining 8 Immunostaining 9 Cell culture 9 Cell lysate preparation 10 Western blotting 10 Constructs 11 RNA inteference 12 Immunoprecipitation 13 Statistical analysis 13 Cell proliferation assay 13 Invasion assay 13 Results 15 Expression of TRIM28 in HCC and its correlation with clinicopathological factors 15 TRIM28 knockdown by inducible express TRIM28 shRNA by pTRIPZ system 15 Lentil virus-mediated shRNA knockdown of TRIM28 17 Characterization of phospho-TRIM28/S681 antibody 18 Plk1 is not a kinase for TRIM28/S681 18 Single S681A mutant cannot alter the subcellular localizations of TRIM28 19 Characterization of phospho-TRIM28/S757 antibody 19 Cdk1 is upstream of TRIM28/S757 20 Discussion 22 The role of TRIM28 in HCC 22 Why pTRIPZ, the inducible knockdown system did not work 23 Phosphorylation of TRIM28/S681 23 Phosphorylation of TRIM28/S757 24 References 26 List of Figures Figure 1. Higher expression of TRIM28 in tumor than in non-tumorous liver tissue. 34 Figure 2. The map of pTRIPZ inducible system. 37 Figure 3. Subcloning of shRNA sense strand from pRNATU6.1/Neo-TRIM28 shRNA to the pTRIPZ inducible system. 38 Figure 4. pTRIPZ-TRIM28 shRNAmir stable 293T clone No.11 was inducible, but cannot knockdown endogenous TRIM28. 40 Figure 5. pTRIPZ-TRIM28 shRNAmir cannot knockdown TRIM28 in HeLa. 41 Figure 6. TRIM28 knockdown in HA22T and cell growth inhibition. 44 Figure 7. TRIM28 knockdown in Huh7-vgh and inhibition of both cell growth and invasiveness. 47 Figure 8. Schematic diagram illustrating the architecture of TRIM28. 48 Figure 9. Characterization of rabbit polyclonal anti-phosphorylated TRIM28/Ser681 antibody. 49 Figure 10. Plk1 is not a kinae for TRIM28/S681. 50 Figure 11. The shuttling of TRIM28 during mitosis. 52 Figure 12. Characterization of phospho-S757 antibody. 54 Figure 13. CK2 α subunit cannot phosphorylate TRIM28/S757. 55 Figure 14. Cdk1 is an upstream kinase of TRIM28/S757. 56 List of Tables Table 1. Immunohistochemical analysis of TRIM28 protein expression and correlation with clinicopathological risk factors in patients with HCC. 35 Table 2. pLKO.1-TRIM28 shRNA clones derived from RNAi core of Academia Sinica. 43 | |
| dc.language.iso | en | |
| dc.subject | Cdk1 | zh_TW |
| dc.subject | TRIM28 | zh_TW |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | 有絲分裂前中期 | zh_TW |
| dc.subject | Cdk1 | en |
| dc.subject | TRIM28 | en |
| dc.subject | HCC | en |
| dc.subject | phosphorylation | en |
| dc.subject | prometaphase | en |
| dc.title | TRIM28的研究:(1)TRIM28於肝癌臨床表現的關係 (2)TRIM28/S681和S757的磷酸化研究 | zh_TW |
| dc.title | The expression and function of TRIM28 in hepatocellular carcinoma and the characterization of phospho-S681 and phospho-S757 polyclonal antibodies | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 譚賢明,張?仁,周涵怡 | |
| dc.subject.keyword | TRIM28,肝細胞癌,磷酸化,有絲分裂前中期,Cdk1, | zh_TW |
| dc.subject.keyword | TRIM28,HCC,phosphorylation,prometaphase,Cdk1, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-06-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
