Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44880
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor金洛仁(Laurent Zimmerli)
dc.contributor.authorChen-Chi Wuen
dc.contributor.author吳晨琦zh_TW
dc.date.accessioned2021-06-15T03:57:12Z-
dc.date.available2010-06-28
dc.date.copyright2010-06-28
dc.date.issued2010
dc.date.submitted2010-06-14
dc.identifier.citationReferences:
Baena-González. E., and Sheen, J. (2008). Convergent energy and stress signaling. Trends Plant Sci. 13, 474-482.
Baena-González. E., Rolland, F., Thevein, J.M., and Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signaling. Nature 448, 938-942.
Beckers, G.J., and Conrath, U. (2007). Priming for stress resistance: from the lab to the field. Curr. Opin. Plant Biol. 10, 425-431.
Beckers, G.J., Jaskiewicz, M., Liu, Y., Underwood, W.R., He, S.Y., Zhang, S., and Conrath, U. (2009). Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21, 944-953.
Buchanan-Wollaston, V., Page, T., Harrison, E., Lim, P.O., Nam H.G., Lin., J.F., Wu, S.H., Swidzinsk, J., Ishizaki, K., and Leaver, C. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between and dark/starvation-induced senescence in Arabidopsis. Plant J. 42, 567-585.
Bonner, C.A., Rodrigues, A.M., Miller, J.A., and Jensen, R.A. (1992). Amino acids are general growth inhibitors of Nicotiana silvestris in tissue culture. Physiol. Plant. 84, 319-328.
Bonner, C.A., Williams, D.S., Aldrich, H.C., and Jensen, R.A. (1996). Antagonism by L-glutamine of toxicity and growth inhibition caused by other amino acids in cell cultures of Nicotiana silvestris. Plant Science 113, 43–58.
Bruce, J.A., Matthes, M.C.,Napier, J.A., and Pickett, J.A. (2007). Stressful “memories” of plants: evidence and possible mechanisms. Plant Science 173, 603-608.
Conrath, U., Beckers, G.J., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Newman, M.A., Pieterse, C.M., Poinssot, B., Pozo, M.J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., and Mauch-Mani, B. (2006). Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071.
Contento A.L., Kim, S.J., and Bassham, D.C. (2004). Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol. 135, 2330-2347.
Filkowski, J., Kovalchuk, O., and Kovalchuk, I. (2004). Genome stability of vtc1, tt4, and tt5 Arabidopsis thaliana mutants impaired in protection against oxidative stress. Plant J. 38, 60–69.
Flors, V., Ton, J., van Doorn, R., Jakab, G., García-Agustín, P., and Mauch-Mani, B. (2008). Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 54, 81-92.
Frost, C.J., Mescher, M.C., Carlson, J.E., and Moraes, C.M.D. (2008). Plant Defense Priming against Herbivores: Getting Ready for a Different Battle. Plant Physiol. 146, 818-824.
Goellner, K. and Conrath, U. (2008). Priming: it's all the world to induced disease resistance. Eur. J. Plant Pathol. 121, 233-242.
Goh, C.H., Nam, H.G., and Park, Y.S. (2003). Stress memory in plants: a negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acid-entrained Arabidopsis plants. Plant J. 36, 240-255.
Gould, K.S., McKelvie, J., and Markham, K.R. (2002). Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ. 25, 1261-1269.
Gould, K.S. and Lister, C. (2006). Flavonoid functions in plants. In: Ø.M. Andersen and K.R. Markham, Editors, Flavonoids: Chemistry, Biochemistry, and Applications, CRC Press, Boca Raton, FL pp. 397–441.
Halford, N.G., and Hey, S.J. (2009). Snf1-related protein kinases (SnRKs) act within intricate network tht links metabolic and stress signaling in plants. Biochem. J. 419, 247-259.
Hare, P.D., and Cress, W.A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21, 79-102.
Herrera-Rodríguez, M.B., Pérez-Vicente, R., and Maldonado J.M. (2007). Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses. Plant Physiol. Biochem. 45, 33-38.
Jakab, G., Ton, J., Flors, V., Zimmerli, L., Métraux, J.P., and Mauch-Mani, B. (2005). Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 139, 264-174.
James, E., Brouquisse, R., Pradet, A., and Raymond, P. (1993). Changes in proteolytic activities in glucose-starved maize root tips. Regulation by sugars. Plant Physiol. Biochem. 31, 845-856.
Jossier, M., Bouly, J.P., Meimoun, P., Arjmand, A., Lessard, P., Hawley, S., Hardle, D.G., and Thomas, M. (2009). SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signaling in Arabidopsis thaliana. Plant J. 59, 316-328.
Jung, H.W., Tschaplinski, T.J., Wang, L., Glazebrook, J., and Greenberg, J.T. (2009). Priming in systemic plant immunity. Science 324, 89-91.
Knight, H., Brandt, S., and Knight, M.R. (1998). A history of stress alters drought calcium signalling pathways in Arabidopsis. Plant J. 16, 681-687.
Kreps, J.A., Wu, Y., Chang, H.S., Zhu, T., Wang, X., and Harper, J.F. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130, 2129–2141.
Lillo, C., Lea, U.S., and Ruoff, P. (2008). Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Eviron. 31, 587-601.
Lin, J.F. and Wu, S.H. (2004). Molecular events in senescing Arabodopsis leaves. Plant J. 39, 612-628.
Mita, S., Murano, N., Akaike, M., and Nakamura, K. (1997b). Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J. 11, 841–851.
Nagata, T., Todoriki, S., Masumizu, T., Suda, I., Furuta, S., Du, Z., and Kikuchi, S. (2003). Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. J. Agric Food Chem. 51, 2992–2999.
Negi, S., Ivanchenko, M.G., and Muday, G.K. (2008). Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J. 55, 175-187.
Pasternak T., Rudas V., Potters G., and Jansen, MAK. (2005). Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ. Experi. Botany. 53, 299-314.
Pham, L.N., Dionne, M.S., Shirasu-Hiza, M., and Schneider, D.S. (2007). A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 3, e26.
Potters, G., Pasternak, T.P., Guisez, Y., Palme, K.J., and Jansen, M.A. (2007). Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci. 12, 98-105.
Potters, G., Pasternak, T.P., Guisez, Y., Jansen, M.A. (2009). Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ. 32, 158-69.
Pourcel, L., Routaboul, J.M., Cheynier, V., Lepiniec, L., and Debeaujon, I. (2008). Flavonoid oxidantion in plants: from biochemical properties to physiological funcations. Trends Plant Sci. 12, 29-36.
Saradhi, P., Alia, P., Sandeep, A., Prasad, K., and Aarora., S. (1995). Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem. Biophys. Res. Commun. 209, 1-5.
Saravitz, C.H. and Raper, C.D. (1995). Responses to sucrose and glutamine by soybean embryos grown in vitro. Physiol. Plant. 93, 799-805.
Siripornadulsil, S., Train, U., Verma, D.P.S., and Sayre, R.T. (2002). Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14, 2837-2847.
Shao, H.B., Guo, Q.J., Chu, L.Y., Zhao, X.N., Su, Z.L., Hu, Y.C., and Cheng, J.F. (2006). Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids and Surfaces B: Biointerfaces 54, 37-45.
Smith, C.M., and Boyko, E.V. (2007). The molecular bases of plant resistance and defense responses to aphid feeding : current status, Entomol. Exp. Appl. 122, 1-16.
Steyn, W.J., Wand, S.J.E., Holcroft, D.M., and Jacobs, G. (2002). Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol. 155, 349-361.
Tardif, G., Ndjido, A., Adam,K.H., Labrie, L., Major, G., Gulick, P., Sarhan, F., and Laliberté, J.F. (2007). Interaction network of proteins associated with abiotic stress response and development in wheat. Plant Mol. Biol. 63, 703-708.
Teng, S., Keurentjes, J., Bentsink, L., Koornneef, M., and Smeekens, S. (2005). Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 139, 1840-1852.
Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyar, S., Krüger, P., Selbig, J., Müller L.A., Rhee, S.Y., and Stitt, M. (2004). MAPMEN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914-939.
Ton, J. and Mauch-Mani, B. (2004). Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 38, 119-130.
Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M.N., Métraux, J.P., and Mauch-Mani B. (2005). Dissecting the beta-aminobutyric acid induced priming pathways in Arabidopsis. Plant Cell 17, 987–999.
van Hulten, M., Pelser, M., van Loon, L.C., Pieterse, C.M.J., and Ton, J. (2006). Costs and benefits of priming for defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 103, 5602–5607.
Verbruggen, N. and Hermans, C. (2008). Proline accumulation in plant: a review. Amino acids 35, 753-759.
Wu, G., Shao, H.B., Chu, L.Y., and Cai, J.W. (2007). Insights into molecular mechanisms of mutual effect between plants and the environment. A review, Agron. Sutain. Dev. 27, 69-78.
Winkle-Shirley, B. (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 126, 485-493.
Wu, L., Chen, X., Ren, H., Zhang, Z., Zhang, H., Wang, J., Wang, X.C., and Huang, R. (2007). ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco. Planta 226, 815-825.

Ye, B. and Gressel, J. (2000). Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis. Planta 211, 50-61.
Zhang, Y. and Turner, J.G. (2008). Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PloS One 3, e3699.
Zimmerli, L., Jakab, C., Metraux, J.P., and Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97, 12920–12925.
Zimmerli, L., Métraux, J.P., and Mauch-Mani, B. (2001). Beta-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126, 517-523.
Zimmerli, L., Hou, B.H., Tsai, C.H., Jakab, G., Mauch-Mani, B., and Somerville, S. (2008). The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J. 53, 144-156.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44880-
dc.description.abstractBeta-aminobutyric acid (簡稱BABA)是一種人工合成胺基酸,在過往的研究中,可以得知,此胺基酸可以有效促進農作物的抗性。在阿拉伯芥中, BABA確實可以提升植物對病害及逆境的抵抗能力,這種抵抗能力就叫做priming。而priming 這種現象, 除了被荷爾蒙和BABA引起之外, 也有文獻指出,受過逆境的植物,在第二次的逆境之下,會比從沒受過逆境的植物會來的更有抗性。在高等植物中,這種因為Biotic stress或Abiotic stress 造成植物對逆境更有抵抗力的生理意義,我們稱之為stress imprinting。
在我的實驗結果中發現,BABA處理過後的植物,會有生長緩慢(stress-induced morphogenic response, SIMR)以及花青素的累積。而且在microarray data中,BABA活化了stress response gene,所以我們猜想BABA很有可能成一種stress反應。而氨基酸分析BABA處理過後的植物,發現有補脯氨酸以及天門冬醯氨酸的累積,
脯胺酸以及天門冬醯胺酸的累積也是植物stress反應之一。所以我們認為BABA 會對植物造成stress的反應, 進而引發植物對第二次逆境抵抗的能力。令人驚訝的是,穀醯氨酸可以回復BABA對植物造成的影響,像是生長抑制(SIMR)和anthocyanin 累積,對細菌的抗性,還有priming的現象。而這可能是因為平常的生長機制和逆境機制是拮抗的結果,而使加入的glutamine引發的生長機制讓BABA造成的stress imprinting 效果減弱。
zh_TW
dc.description.abstractThe non-protein amino acid beta-aminobutyric acid (BABA) is not produced by plant. BABA has been known for years to be an effective inducer of resistance in various crops. BABA-pretreated Arabidopsis plants challenged with pathogen and abiotic stress will demonstrate enhanced resistance. The induced resistance is often associated with an enhanced capacity to mobilize infection-induced cellular defense responses, this process is called “priming”. Recently, BABA priming was found to be involved in resistance to osmotic and heat stress. The process of priming or hardening involves prior exposure to biotic stress or an abiotic stress making a plant more resistant to future exposure. This indicates the higher plants possess some capacity for memory, or stress imprinting.
Microarray data analyses revealed that BABA provokes an accumulation of transcripts involved in both stress signaling and Arabidopsis developmental responses. In addition, BABA was found to activate the stress-induced morphogenic response (SIMR), and also induced anthocyanin accumulation in Arabidopsis. Free amino acids analyses showed that BABA-treated Arabidopsis contain more Asparagine and Proline. Both amino acids are known to accumulate in stressed plants. This observation further indicates that BABA induces a stress imprinting response in Arabidopsis.
L-Glutamine is known to counteract the general amino acid inhibition response when supplied to the plant at high concentration. L-Glutamine treatments were found to block BABA-mediated growth inhibition (SIMR), anthocyanin accumulation, priming and bacterial protection. Alteration of the amino acid balance in BABA-treated Arabidopsis also suggests that BABA provokes a stress response by activating the general amino acid inhibition response. Our work suggests that BABA provokes a general amino acid inhibition response in Arabidopsis that leads to stress imprinting.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:57:12Z (GMT). No. of bitstreams: 1
ntu-99-R96b42006-1.pdf: 1933273 bytes, checksum: 5096dcc2480a153004b443b492bef4f6 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsTable of Contents
碩士論文口試委員審定書
誌謝.....................................................i
摘要……………………………………………………………………ii
Abstract………………………………………………………………. iv
List of figure………………………………………………………….ix
Abbreviations……………………………………………………......xi
Introduction…………………………………………………………...1
Materials and methods……………………………………………5
1. Root Growth assay…………………………………………………….5
2. Measurement of anthocyanin content ……………………………….5
3. BABA and amino acid treatment …………………………………….6
4. Heat shock treatment …………………………………………………6
5. Measurement of leaves weight ……………………………...….…….7
6. Pseudomonas syringae Bioassay ………………………….……..…....7
7. Colony Forming Unit (CFU) counting …………………….……...…8
8. RNA extraction and c DNA biosynthesis ………………………….…9
9. Real-Time PCR …………………………………………………….….9
10. Free amino acid purification………………………………………...11
11. Free amino acids analysis ……………………………..……………..11
Results……………………………………………................................13
1. BABA provokes a stress-induced morphogenic response………….13
2. BABA increases accumulation of anthocyanin ………………….....16
3. BABA affects the amino acid balance in Arabidopsis …….….........19
4. Glutamine rescues the BABA-induced stress-induced morphogenic response……………………………………….……………………....21
5. Glutamine inhibits BABA-mediated accumulation of anthocyanin……………………………………………………...……24
6. BABA-enhanced Arabidopsis thermotolerance is altered by Glutamine …………………………………………………….……....27
7. Glutamine inhibits BABA-mediated resistance to Pst DC3000….. .30
8. BABA-induced priming of PR1 expression is inhibited by Glutamine ……………………………………………………….....…32
9. BABA induced stress response gene expression in Arabidopsis …………………………………………………………..34
Discussion…………………………………………………………….36
1. BABA induces SIMR in Arabidopsis ………………………...……..36
2. What kind of mild chronic stress may be induced by BABA? ………………………………………………………..……....37
3. Does BABA prime the Arabidopsis defense response by stress imprinting? ………………………………………………………......39
Conclusions and future perspectives ……………………...41
References…………………………………………………………....42
Appendix ……………………………………………………….……54
dc.language.isozh-TW
dc.title左旋穀醯胺酸抑制bata-aminobutyric acid在阿拉伯芥中引起的抵抗逆境效果和priming的現象zh_TW
dc.titleL-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsisen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝旭亮(Hsu-Liang Hsieh),張英?(Ing-Feng Chang)
dc.subject.keyword阿拉伯芥,花青素,逆境記憶,zh_TW
dc.subject.keywordArabidopsis,β-aminobutyric acid,stress imprinting,stress-induced morphogenic response (SIMR),Anthocyanin,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2010-06-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved