Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44872
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳家麟(Ja-Ling Wu)
dc.contributor.authorYu-Shan Paien
dc.contributor.author白育姍zh_TW
dc.date.accessioned2021-06-15T03:57:00Z-
dc.date.available2010-06-24
dc.date.copyright2010-06-24
dc.date.issued2010
dc.date.submitted2010-06-15
dc.identifier.citation[1] D. Slepian and J. Wolf, 'Noiseless coding of correlated information sources,' IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471-480 Jul, 1973
[2] A. D. Wyner and J. Ziv, 'The rate-distortion function for source coding with side information at the decoder,' IEEE Trans. Inf. Theory, vol. 22, pp. 1-10, 1976.
[3] A. Aaron, R. Zhang and B. Girod, 'Wyner-ziv coding of motion video,' the Asilomar Conference. on Signals, Systems and Computers, pp. 240-244 Nov, 2002.
[4] B. Girod, A. Aaron, S. Rane and D. R. Monedero, 'Distributed video coding,' in Proc. IEEE, pp. 71-83, Jan, 2005.
[5] J. D. Areia, J. Ascenso, C. Brites and F. Pereira, 'Low complexity hybrid rate control for lower complexity wyner-ziv video decoding,' the 16th European Signal Processing Conference, Aug, 2008.
[6] C. Brites and F. Pereira, 'Encoder rate control for transform domain wyner-ziv video coding,' Int. Conf. on Image Processing Sep, 2007.
[7] D. Kubasov and C. Guillemot, 'A hybrid encoder/decoder rate control for wyner-ziv video coding with a feedback channel,' IEEE International Workshop on Multimedia Signal Processing, Oct, 2007.
[8] C. Brites, J. Ascenso, J. Pedro and F. Pereira, 'Evaluating a feedback channel based transform domain wyner-ziv video codec,' accepted for publication in Signal Processing: Image Communication, vol. 23, no. 4, pp. 269-297, Apr, 2008.
[9] J. Chen, A. Khisti, D. M. Malioutov and J. S. Yedidia, 'Distributed source coding using serially-concatenated-accumulate codes,' IEEE Information Theory Workshop, Oct, 2004.
[10] J. Ascenso and F. Pereira, 'Design and performance of a novel low-density parity-check code for distributed video coding,' IEEE International Conference on Image Processing, Oct, 2008.
[11] D. Schonberg, S. Pradhan and K. Ramchandran, 'Ldpc codes can approach the slepian-wolf bound for general binary sources,' in Proc. Allerton Conference on Communication, Control, and Computing, Oct, 2002.
[12] G. Falcao, L. Sousa and V. Silva, 'Massive parallel ldpc decoding on gpu,' in Proc. the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, pp. 83-90, Feb, 2008.
[13] D. Varodayan, A. Aaron and B. Girod, 'Rate-adaptive codes for distributed source coding,' EURASIP Signal Processing Journal, Special Section on Distributed Source Coding, vol. 86, no. 11, pp. 3123 - 3130, Nov, 2006.
[14] J. Jiang, D.-K. He and A. Jagmohan, 'Rateless slepian-wolf coding based on rate adaptive low-density-parity-check codes,' in Proc. ISIT, 2007.
[15] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov and M. Ouaret, 'The discover codec: Architecture, techniques and evaluation,' Picture Coding Symposium, Nov, 2007.
[16] D. Varodayan, D. Chen, M. Flierl and B. Girod, 'Wyner-ziv coding of video with unsupervised motion vector learning,' EURASIP Signal Process. Image Commun., pp. 369-378, 2008.
[17] D.-k. He, A. Jagmohan, L. Lu and V. Sheinin, 'Wyner-ziv video compression using rateless ldpc codes,' in Proc. SPIE: Visual Communications and Image Processing, 2008.
[18] C. Shu-ting, W. Qin-ruo, X. Yun and Y. Ming, 'Adaptive rateless ldpc code used for distributed video coding,' 2009 WRI Global Congress on Intelligent Systems, pp. 131-135, 2009.
[19] J. Ascenso and F. Pereira, 'Complexity efficient stopping criterion for ldpc based distributed video coding,' in Proc. the 5th International ICST Mobile Multimedia Communications Conference Sep, 2009.
[20] I. I. 14496-10, 'Coding of audio-visual objects–part 10: Advanced video coding,' (July 2003, 1st edn ; also ITU-T: 2003, H.264).
[21] Discover - test material: http://www.img.lx.it.pt/~discover/test_conditions.html.
[22] J. Ascenso, C. Brites and F. Pereira, 'Content adaptive wyner-ziv video coding driven by motion activity,' IEEE International Conf. on Image Processing, Oct, 2007.
[23] C. Brites and F. Pereira, 'Correlation noise modeling for efficient pixel and transform domain wyner-ziv video coding,' IEEE Trans. Circuits Syst. Video Technol, vol. 18, no. 9, pp. 1177-1190, Sep, 2008.
[24] H.-P. Cheng, 'High efficient distributed video coding with parallelized design for cloud computing ' Department of Computer Science and Information Engineering, 2010.
[25] D. Kubasov, J. Nayak and C. Guillemot, 'Optimal reconstruction in wyner-ziv video coding with multiple side information,' IEEE Workshop on Multimedia Signal Processing, Oct, 2007.
[26] R. P. Westerlaken, S. Borchert, R. K. Gunnewiek and R. L. Lagendijk, 'Analyzing symbol and bit plane-based ldpc in distributed video coding,' IEEE International Conf. on Image Processing, 2007.
[27] S. Cheng and Z. Xiong, 'Successive refinement for the wyner-ziv problem and layered code design,' IEEE Trans. on Signal Processing, vol. 53, no. 8, pp. 3269-3281, Aug, 2005.
[28] R. M. Tanner, Professor of Computer Science, School of Engineering University of California, Santa Cruz Testimony before Representatives of the United States Copyright Office, Feb. 10, 1999.
[29] A. Liveris, Z. Xiong and C. Georghiades, 'Compression of binary sources with side information at the decoder using ldpc codes,' IEEE Commun. Lett., vol. 6, no. 10, pp. 440-442, 2002.
[30] Discover: http://www.discoverdvc.org/.
[31] D. MacKay, Source code for progressive edge growth parity-check matrix construction: http://www.inference.phy.cam.ac.uk/mackay/PEG_ECC.html.
[32] H.264/avc software http://iphome.hhi.de/suehring/tml.
[33] Nvidia developer: http://developer.nvidia.com/object/cuda.html.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44872-
dc.description.abstract分散式視訊編碼是一種新興起的應用,它顛覆了傳統的壓縮方式,將原本必須在編碼端大量計算的複雜度移至解碼端來做,這樣的好處是在行動裝置上都可以使用這類的編碼,在客戶端進行簡單的編碼,再傳送至伺服器端進行高複雜度的解碼。而分散式視訊編碼目前採用的流量控制有三種,這些流量控制主要是在估計編碼端需傳送多少的位元給解碼端以幫助解碼端順利解碼。另外,還有兩種可調式低密度同位檢查碼被採用在分散式視訊編碼中,分別是累加式低密度同位檢查碼以及可調長度式低密度同位檢查碼,不過到目前為止,上述的三種流量控制以及兩種可調式低密度同位檢查碼皆還沒有被完整的評估過,因此,在本篇論文中,我們將針對這三種流量控制以及兩種可調式低密度同位檢查碼分別做比較以及評估其試用環境。
除此之外,在有回饋式通道的分散式視訊編碼中,解碼端的高複雜度一直是個有待解決的問題,這個高複雜度主要是因為解碼端不斷地送出檢查碼請求所導致的。因此,我們提出了兩種降低複雜度的方法,一種是在圖形處理器上將低密度同位檢查碼的遞迴計算平行化,另一種則是降低解碼端送出檢查碼請求的次數。而實驗結果也證明了,藉由這兩種加速的方法,可以在損失些微的比率失真下達到高速的運算。
zh_TW
dc.description.abstractDistributed video coding (DVC) is a new coding paradigm targeting applications with the need for low-complexity encoding at the cost of a higher decoding complexity, using different types of rate control which is responsible for estimating how many syndromes are required for WZ video decoding. On the other hand, two well known rate-compatible LDPC codes, 1) LDPC Accumulate (LDPCA) code and 2) rateless LDPC code, have been proposed and successfully integrated into DVC. So far, the different rate controls and the two rate-compatible LDPC codes have never been compared under a fair emulation. Thus, we evaluate and compare them in this thesis.
Besides, in the DVC architecture based on a feedback channel, the high decoding complexity is mainly due to the request-decode operation with repetitively fixed step size (induced by Slepian–Wolf decoding). In this thesis, a parallel message-passing decoding algorithm for low density parity check (LDPC) syndrome is applied through Compute Unified Device Architecture (CUDA) based on General-Purpose Graphics Processing Unit (GPGPU). Furthermore, we propose an approach to reduce the number of requests dubbed as Ladder Request Step Size (LRSS) which leads to more speedup gain. Experimental results show that, through our work, significant speedup in decoding time is achieved with negligible loss in rate-distortion (RD) performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:57:00Z (GMT). No. of bitstreams: 1
ntu-99-R97922007-1.pdf: 1905651 bytes, checksum: 622a8df20a805cc4fd25d370bd8b4f93 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
Chapter 2 WZ Video Coding Rate Control 5
2.1 Introduction of WZ Video Coding Rate Control 5
2.1.1 Decoder Rate Control (DRC) 5
2.1.2 Hybrid Rate Control (HRC) 6
2.1.3 Encoder Rate Control (ERC) 7
2.2 Realization of WZ Video Coding Rate Control 8
2.2.1 DISPAC Codec Architecture 8
2.2.2 Realization of DRC in DISPAC codec 11
2.2.2.1 Side Information Creation 11
2.2.2.2 Correlation Noise Parameter Estimation 12
2.2.2.3 Correlation Noise Distribution Modeling 13
2.2.2.4 Conditional Bit Probabilities Computation 14
2.2.2.5 Minimum Rate Estimation 15
2.2.3 Realization of HRC in DISPAC codec 15
2.2.3.1 Fast Side Information Creation 16
2.2.3.2 Low Complexity Correlation Noise Parameter Estimation 18
2.2.3.3 Low Complexity Correlation Noise Distribution Modeling 18
2.2.3.4 Low Complexity Conditional Bit Probabilities Computation 19
2.2.3.5 Minimum Rate Estimation 19
2.2.4 Realization of ERC in DISPAC codec 20
2.2.4.1 Bitplane Relative Error Probability Computation 20
2.2.4.2 Finally Required Rate (FRR) Estimation 21
2.3 Comparison of HRC, DRC and ERC 22
Chapter 3 LDPC based Distributed Video Coding 26
3.1 Message-Passing Algorithm in DVC 28
3.1.1 Representations of LDPC Codes 28
3.1.1.1 Matrix Representation 28
3.1.1.2 Graphical Representation 29
3.1.2 Encoding 30
3.1.3 Decoding 30
3.2 LDPC Accumulate (LDPCA) codes 34
3.2.1 Introduction of LDPCA 34
3.2.2 Accumulate Parity Check Matrix 35
3.2.3 Rate Adaptivity 38
3.3 Rateless LDPC 40
3.3.1 Introduction of Rateless LDPC 40
3.3.2 Punctured Parity Matrix and Rate Adaptivity 41
3.4 Comparison of LDPCA and Rateless LDPC 44
3.4.1 Variable Rate Versus Fixed Rate 44
3.4.2 Without Feedback Channel 46
3.4.3 With Feedback Channel 50
Chapter 4 Acceleration of LDPCA Decoding in DVC 54
4.1 GPU Architecture and Programming Model 54
4.2 Parallel LDPCA Decoding on GPU 56
4.2.1 Compact Data Structure 56
4.2.2 Parallel Algorithm of LDPCA Decoding on GPU Platform 60
4.3 Ladder Request Step Size (LRSS) 62
Chapter 5 Performance Evaluations 65
5.1 DISPAC Codec 67
5.2 DISCOVER Codec 72
Chapter 6 Conclusion and Future Work 75
REFERENCE 77
dc.language.isoen
dc.title低密度同位檢查碼在分散式視訊編碼中之效能評估與加速zh_TW
dc.titlePerformance Analysis and Acceleration of LDPC in Distributed Video Codingen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee童怡新,許秋婷,黃俊翔
dc.subject.keyword低密度同位檢查碼,分散式視訊編碼,圖形處理器,zh_TW
dc.subject.keywordLDPC,DVC,GPU,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2010-06-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved