Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44857
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳力騏(Richie L.C. Chen)
dc.contributor.authorHsien-Yi Hsiaoen
dc.contributor.author蕭賢義zh_TW
dc.date.accessioned2021-06-15T03:56:37Z-
dc.date.available2010-06-30
dc.date.copyright2010-06-30
dc.date.issued2010
dc.date.submitted2010-06-18
dc.identifier.citation1. Aiyama, R., H. Nagai, K. Nokata, C. Shinohara and S. Sawada. 1988. A camptothecin derivative from nothapodytes foetida. Phytochemistry 27:3663-3664.
2. Alan Crozier, Michael N. Clifford and H. Ashihara. 2006. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet. First edition. 1-2. Singapore:Blackwell.
3. Aucamp, J. P., Y. Hara and Z. Apostolides. 2000. Simultaneous analysis of tea catechins, caffeine, gallic acid, theanine and ascorbic acid by micellar electrokinetic capillary chromatography. Journal of Chromatography A 876:235-242.
4. Backlund, M., B. Oxelman and B. Bremer. 2000. Phylogenetic relationships within the gentianales based on NDHF and RBCL sequences, with particular reference to the Loganiaceae. American Journal of Botany 87:1029-1043.
5. Barroso, M. B. and G. Van De Werken. 1999. Determination of green and black tea composition by capillary electrophoresis. HRC Journal of High Resolution Chromatography 22:225-230.
6. Boehm, K., F. Borrelli, E. Ernst, G. Habacher, S. K. Hung, S. Milazzo and M. Horneber. 2009. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database of Systematic Reviews
7. Bonoli, M., P. Colabufalo, M. Pelillo, T. G. Toschi and G. Lercker. 2003. Fast determination of catechins and xanthines in tea beverages by micellar electrokinetic chromatography. J Agr Food Chem 51:1141-1147.
8. Bonoli, M., M. Pelillo, T. G. Toschi and G. Lercker. 2003. Analysis of green tea catechins: Comparative study between HPLC and HPCE. Food Chem 81:631-638.
9. Borah, S. and M. Bhuyan. 2005. A computer based system for matching colours during the monitoring of tea fermentation. International Journal of Food Science and Technology 40:675-682.
10. Bretnall, A. E. and G. S. Clarke. 1995. Investigation and optimisation of the use of organic modifiers in micellar electrokinetic chromatography. Journal of Chromatography A 716:49-55.
11. Cabrera, C., R. Artacho and R. Giménez. 2006. Beneficial effects of green tea - A review. Journal of the American College of Nutrition 25:79-99.
12. Chen, C. N., C. M. Liang, J. R. Lai, Y. J. Tsai, J. S. Tsay and J. K. Lin. 2003. Capillary Electrophoretic Determination of Theanine, Caffeine, and Catechins in Fresh Tea Leaves and Oolong Tea and Their Effects on Rat Neurosphere Adhesion and Migration. J Agr Food Chem 51:7495-7503.
13. Chen, P. C., F. S. Chang, I. Z. Chen, F. M. Lu, T. J. Cheng and R. L. C. Chen. 2007. Redox potential of tea infusion as an index for the degree of fermentation. Analytica Chimica Acta 594:32-36.
14. Chen, Q., J. Zhao, S. Chaitep and Z. Guo. 2009. Simultaneous analysis of main catechins contents in green tea (Camellia sinensis (L.)) by Fourier transform near infrared reflectance (FT-NIR) spectroscopy. Food Chem 113:1272-1277.
15. Chen, Q., J. Zhao, H. Zhang and X. Wang. 2006. Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration. Analytica Chimica Acta 572:77-84.
16. Ciosek, P., Z. Kraszewska and W. Wròblenski. 2009. Polyurethane membranes used in integrated electronic tongue for the recognition of tea and herbal products. Electroanalysis 21:2036-2043.
17. Cohen, A. S. and B. L. Karger. 1987. High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins. Journal of Chromatography A 397:409-417.
18. Dalluge, J. J. and B. C. Nelson. 2000. Determination of tea catechins. Journal of Chromatography A 881:411-424.
19. Das, S. K. and V. K. Tewari. 2004. Changes in tea shoots and made tea due to or during withering: A review. Journal of Food Science and Technology 41:235-239.
20. Friedman, M. and H. S. Jürgens. 2000. Effect of pH on the stability of plant phenolic compounds. J Agr Food Chem 48:2101-2110.
21. Fulzele, D. P. and R. K. Satdive. 2005. Comparison of techniques for the extraction of the anti-cancer drug camptothecin from Nothapodytes foetida. Journal of Chromatography A 1063:9-13.
22. Fulzele, D. P. and R. K. Satdive. 2005. Distribution of anticancer drug camptothecin in Nothapodytes foetida. Fitoterapia 76:643-648.
23. García-Campaña, A. M., L. Gámiz-Gracia, F. J. Lara, M. Del Olmo Iruela and C. Cruces-Blanco. 2009. Applications of capillary electrophoresis to the determination of antibiotics in food and environmental samples. Analytical and Bioanalytical Chemistry 395:967-986.
24. Gharpure, G., B. Chavan, U. Lele, A. Hastak, A. Bhave, N. Malpure, R. Vasudeva and P. A. 2010. Camptothecin accumulation in Ophiorrhiza rugosa var. prostrata from northern Western Ghats. Current Science 98:302-304.
25. Graham, H. N. 1992. Green tea composition, consumption, and polyphenol chemistry. Preventive Medicine 21:334-350.
26. Gupta, J., Y. H. Siddique, T. Beg, G. Ara and M. Afzal. 2008. A review on the beneficial effects of tea polyphenols on human health. International Journal of Pharmacology 4:314-338.
27. Gurib-Fakim, A. 2006. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine 27:1-93.
28. Harbowy, M. E. and D. A. Balentine. 1997. Tea chemistry. Crit. Rev. Plant Sci. 16:415-480.
29. Haslam, E. 2003. Thoughts on thearubigins. Phytochemistry 64:61-73.
30. Hatefi, A. and B. Amsden. 2002. Camptothecin delivery methods. Pharmaceutical Research 19:1389-1399.
31. He, Y., X. Li and X. Deng. 2007. Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model. Journal of Food Engineering 79:1238-1242.
32. Hilu, K. W., T. Borsch, K. Müller, D. E. Soltis, P. S. Soltis, V. Savolainen, M. W. Chase, M. P. Powell, L. A. Alice, R. Evans, H. Sauquet, C. Neinhuis, T. A. B. Slotta, J. G. Rohwer, C. S. Campbell and L. W. Chatrou. 2003. Angiosperm phylogeny based on matK sequence information. American Journal of Botany 90:1758-1776.
33. Hjertén, S. and M. d. Zhu. 1985. Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing. Journal of Chromatography A 346:265-270.
34. Hsiao, H. Y., R. L. C. Chen and T. J. Cheng. 2010. Determination of tea fermentation degree by a rapid micellar electrokinetic chromatography. Food Chem 120:632-636.
35. Hsiao, H. Y., T. J. Cheng, G. M. Yang, I. J. Huang and R. L. C. Chen. 2008. Determination of camptothecins in DMSO extracts of Nothapodytes foetida by direct injection capillary electrophoresis. Phytochemical Analysis 19:136-140.
36. Huie, C. W. 2003. Effects of organic solvents on sample pretreatment and separation performances in capillary electrophoresis. Electrophoresis 24:1508-1529.
37. Hung, Y. T., P. C. Chen, R. L. C. Chen and T. J. Cheng. 2010. Sequential determination of tannin and total amino acid contents in tea for taste assessment by a fluorescent flow-injection analytical system. Food Chem 118:876-881.
38. Ivarsson, P., Y. Kikkawa, F. Winquist, C. Krantz-Rülcker, N. E. Höjer, K. Hayashi, K. Toko and I. Lundström. 2001. Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor. Analytica Chimica Acta 449:59-68.
39. Jansen, M. A. K., K. Hectors, N. M. O'Brien, Y. Guisez and G. Potters. 2008. Plant stress and human health: Do human consumers benefit from UV-B acclimated crops? Plant Science 175:449-458.
40. Jayabalan, R., S. Marimuthu and K. Swaminathan. 2007. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem 102:392-398.
41. Jorgenson, J. W. and K. D. Lukacs. 1981. High-resolution separations based on electrophoresis and electroosmosis. Journal of Chromatography A 218:209-216.
42. Jorgenson, J. W. and K. D. Lukacs. 1983. Capillary zone electrophoresis. Science 222:266-272.
43. Kennedy, R. T. and J. W. Jorgenson. 1989. Preparation and evaluation of packed capillary liquid chromatography columns with inner diameters from 20 to 50 μm. Analytical Chemistry 61:1128-1135.
44. Kilmartin, P. A. and C. F. Hsu. 2003. Characterisation of polyphenols in green, oolong, and black teas, and in coffee, using cyclic voltammetry. Food Chem 82:501-512.
45. Kim, K. Y. and H. J. Chung. 2000. Flavor compounds of pine sprout tea and pine needle tea. J Agr Food Chem 48:1269-1272.
46. Kliebenstein, D. J. 2004. Secondary metabolites and plant/environment interactions: A view through Arabidopsis thaliana tinged glasses. Plant, Cell and Environment 27:675-684.
47. Larger, P. J., A. D. Jones and C. Dacombe. 1998. Separation of tea polyphenols using micellar electrokinetic chromatography with diode array detection. Journal of Chromatography A 799:309-320.
48. Lee, B. L. and C. N. Ong. 2000. Comparative analysis of tea catechins and theaflavins by high- performance liquid chromatography and capillary electrophoresis. Journal of Chromatography A 881:439-447.
49. Li, C. Y., C. H. Lin and T. S. Wu. 2005. Quantitative analysis of camptothecin derivatives in Nothapodytes foetida using 1H-NMR method. Chemical and Pharmaceutical Bulletin 53:347-349.
50. Li, S., Y. Yi, Y. Wang, Z. Zhang and R. S. Beasley. 2002. Camptothecin accumulation and variations in Camptotheca. Planta Medica 68:1010-1016.
51. Lin, J. K., C. L. Lin, Y. C. Liang, S. Y. Lin-Shiau and I. M. Juan. 1998. Survey of Catechins, Gallic Acid, and Methylxanthines in Green, Oolong, Pu-erh, and Black Teas. J Agr Food Chem 46:3635-3642.
52. Lin, Y. S., Y. J. Tsai, J. S. Tsay and J. K. Lin. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J Agr Food Chem 51:1864-1873.
53. Liou, Y. M., S. R. Hsieh and T. J. Wu. 2009. Green tea and cardiac health. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 4:
54. Liu, Z., S. B. Carpenter, W. J. Bourgeois, Y. Yu, R. J. Constantin, M. J. Falcon and J. C. Adams. 1998. Variations in the secondary metabolite camptothecin in relation to tissue age and season in Camptotheca acuminata. Tree Physiology 18:265-270.
55. Liu, Z., G. Zhou, S. Xu, J. Wu and Y. Yin. 2002. Provenance variation in camptothecin concentrations of Camptotheca acuminata grown in China. New Forests 24:215-224.
56. Liu, Z., H. Zou, M. Ye, J. Ni and Y. Zhang. 1999. Effects of organic modifiers on solute retention and electrokinetic migrations in micellar electrokinetic capillary chromatography. Electrophoresis 20:2898-2908.
57. Lopez-Meyer, M., C. L. Nessler and T. D. McKnight. 1994. Sites of accumulation of the antitumor alkaloid camptothecin in Camptotheca acuminata. Planta Medica 60:558-560.
58. Lorence, A. and C. L. Nessler. 2004. Camptothecin, over four decades of surprising findings. Phytochemistry 65:2735-2749.
59. Luypaert, J., M. H. Zhang and D. L. Massart. 2003. Feasibility study for the use of near infrared spectroscopy in the qualitative and quantitative analysis of green tea, Camellia sinensis (L.). Analytica Chimica Acta 478:303-312.
60. Lvova, L., A. Legin, Y. Vlasov, G. S. Cha and H. Nam. 2003. Multicomponent analysis of Korean green tea by means of disposable all-solid-state potentiometric electronic tongue microsystem. Sensors and Actuators, B: Chemical 95:391-399.
61. Mikkers, F. E. P., F. M. Everaerts and T. P. E. M. Verheggen. 1979. High-performance zone electrophoresis. Journal of Chromatography A 169:11-20.
62. Molina, M. and M. Silva. 2002. Micellar electrokinetic chromatography: Current developments and future. Electrophoresis 23:3907-3921.
63. Morin, P., F. Villard and M. Dreux. 1993. Borate complexation of flavonoid-O-glycosides in capillary electrophoresis. I. Separation of flavonoid-7-O-glycosides differing in their flavonoid aglycone. Journal of Chromatography 628:153-160.
64. Morin, P., F. Villard, M. Dreux and P. Andre. 1993. Borate complexation of flavonoid-O-glycosides in capillary electrophoresis. II. Separation of flavonoid-3-O-glycosides differing in their sugar moiety. Journal of Chromatography 628:161-169.
65. Muthumani, T. and R. S. S. Kumar. 2006. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chem 101:98-102.
66. Naczk, M. and F. Shahidi. 2004. Extraction and analysis of phenolics in food. Journal of Chromatography A 1054:95-111.
67. Nakazawa, M., H. Hatano, M. Nagaoka and N. Aiyama. 2003. Extraction method with high boiling solvent for camptothecin and its analogues in Camptotheca acuminata, and rapid HPLC analysis with monolithic column. Chromatography 24:81.
68. Nieh, C. H., B. C. Hsieh, P. C. Chen, H. Y. Hsiao, T. J. Cheng and R. L. C. Chen. 2009. Potentiometric flow-injection estimation of tea fermentation degree. Sensors and Actuators, B: Chemical 136:541-545.
69. Palmer, J., S. Atkinson, W. Y. Yoshida, A. M. Stalcup and J. P. Landers. 1998. Charged chelate - Capillary electrophoresis of endogenous corticosteroids. Electrophoresis 19:3045-3051.
70. Palumbo, M., C. Sissi, B. Gatto, S. Moro and G. Zagotto. 2001. Quantitation of camptothecin and related compounds. Journal of Chromatography B: Biomedical Sciences and Applications 764:121-140.
71. Pan, X. W., Y. Y. Shi, X. Liu, X. Gao and Y. T. Lu. 2004. Influence of inorganic microelements on the production of camptothecin with suspension cultures of Camptotheca acuminata. Plant Growth Regulation 44:59-63.
72. Pan, X. W., H. H. Xu, X. Liu, X. Gao and Y. T. Lu. 2004. Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminata. Biotechnology Letters 26:1745-1748.
73. Puri, S. C., G. Handa, B. A. Bhat, V. K. Gupta, T. Amna, N. Verma, R. Anand, K. L. Dhar and G. N. Qazi. 2005. Separation of 9-methoxycamptothecin and camptothecin from Nothapodytes foetida by semipreparative HPLC. Journal of Chromatographic Science 43:348-350.
74. Ravichandran, R. and R. Parthiban. 2000. Lipid occurrence, distribution and degradation to flavour volatiles during tea processing. Food Chem 68:7-13.
75. Riekkola, M. L. 2002. Recent advances in nonaqueous capillary electrophoresis. Electrophoresis 23:3865-3883.
76. Righetti, P. G., C. Gelfi and M. Conti. 1997. Current trends in capillary isoelectric focusing of proteins. Journal of Chromatography B: Biomedical Applications 699:91-104.
77. Robbins, R. J. 2003. Phenolic acids in foods: An overview of analytical methodology. J Agr Food Chem 51:2866-2887.
78. Roja, G. 2006. Comparative studies on the camptothecin content from Nothapodytes foetida and Ophiorrhiza species. Natural Product Research 20:85-88.
79. Ruth, L. 2002. Dietary supplement quality control in the making. Analytical Chemistry 74:313A-315A
80. Schmitt-Kopplin, P., N. Hertkorn, A. W. Garrison, D. Freitag and A. Kettrup. 1998. Influence of Borate Buffers on the Electrophoretic Behavior of Humic Substances in Capillary Zone Electrophoresis. Analytical Chemistry 70:3798-3808.
81. Shishikura, Y. and S. Khokhar. 2005. Factors affecting the levels of catechins and caffeine in tea beverage: Estimated daily intakes and antioxidant activity. J Sci Food Agr 85:2125-2133.
82. Sirikantaramas, S., H. Sudo, T. Asano, M. Yamazaki and K. Saito. 2007. Transport of camptothecin in hairy roots of Ophiorrhiza pumila. Phytochemistry 68:2881-2886.
83. Sriram, D., P. Yogeeswari, R. Thirumurugan and T. Ratan Bal. 2005. Camptothecin and its analogues: A review on their chemotherapeutic potential. Natural Product Research 19:393-412.
84. Stach, D. and O. J. Schmitz. 2001. Decrease in concentration of free catechins in tea over time determined by micellar electrokinetic chromatography. Journal of Chromatography A 924:519-522.
85. Su, Y. L., L. K. Leung, Y. Huang and Z. Y. Chen. 2003. Stability of tea theaflavins and catechins. Food Chem 83:189-195.
86. Sudo, H., T. Yamakawa, M. Yamazaki, N. Aimi and K. Saito. 2002. Bioreactor production of camptothecin by hairy root cultures of ophiorrhiza pumila. Biotechnology Letters 24:359-363.
87. Takimoto, C. H., J. Wright and S. G. Arbuck. 1998. Clinical applications of the camptothecins. Biochimica et Biophysica Acta - Gene Structure and Expression 1400:107-119.
88. Terabe, S., K. Otsuka, K. Ichikawa, A. Tsuchiya and T. Ando. 1984. Electrokinetic separations with micellar solutions and open-tubular capillaries [2]. Analytical Chemistry 56:111-113.
89. Tiselius, A. 1937. A new apparatus for electrophoretic analysis of colloidal mixtures. Transactions of the Faraday Society 33:524-531.
90. Tomas-Barberan, F. A. 1995. Capillary electrophoresis: A new technique in the analysis of plant secondary metabolites. Phytochemical Analysis 6:177-192.
91. Tsai, T. H. 2001. Analytical approaches for traditional Chinese medicines exhibiting antineoplastic activity. Journal of Chromatography B: Biomedical Sciences and Applications 764:27-48.
92. Tsuda, T. 1987. Electrochromatography using high applied voltage [2]. Analytical Chemistry 59:521-523.
93. Wall, M. E., M. C. Wani, C. E. Cook, K. H. Palmer, A. T. McPhail and G. A. Sim. 1966. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata [24]. Journal of the American Chemical Society 88:3888-3890.
94. Weinberger, R. 2000. Practical capillary electrophoresis 2nd. San diego, CA Academic Press.
95. Weiss, D. J., E. J. Austria, C. R. Anderton, R. Hompesch and A. Jander. 2006. Analysis of green tea extract dietary supplements by micellar electrokinetic chromatography. Journal of Chromatography A 1117:103-108.
96. Wright, L. P., J. P. Aucamp and Z. Apostolides. 2001. Analysis of black tea theaflavins by non-aqueous capillary electrophoresis. Journal of Chromatography A 919:205-213.
97. Wu, T.-S., Y.-L. Leu, H.-C. Hsu, L.-F. Ou, C.-C. Chen, C.-F. Chen, J.-C. Ou and Y.-C. Wu. 1995. Constituents and cytotoxic principles of Nothapodytes foetida. Phytochemistry 39:383-385.
98. Wu, T. S., Y. Y. Chan, Y. L. Leu, C. Y. Chern and C. F. Chen. 1996. Nothapodytines A and B from Nothapodytes foetida. Phytochemistry 42:907-908.
99. Yan, C., R. Dadoo, R. N. Zare, D. J. Rakestraw and D. S. Anex. 1996. Gradient Elution in Capillary Electrochromatography. Analytical Chemistry 68:2726-2730.
100. Yang, S. P. and C. K. Lee. 2009. The historical review of camptothecin and its derivatives. Chemistry (The Chinese Chemical Society, Taipei) 67:45-60.
101. Ying, S. S. 1995. Coloured illustrations of ligneous plants of Taiwan. First Edition. p. 443. Taipei:Ying, S.S. .
102. Yung, L. M., F. P. Leung, W. T. Wong, X. Y. Tian, L. H. Yung, Z. Y. Chen, X. Q. Yao and Y. Huang. 2008. Tea polyphenols benefit vascular function. Inflammopharmacology 16:230-234.
103. Zhao, J., Z. Guo, Q. Chen and Q. Lu. 2008. Feasibility study on use of near-infrared spectroscopy in quantitative analysis of catechins in green tea. Guangxue Xuebao/Acta Optica Sinica 28:2302-2306.
104. Zufía, L., A. Aldaz and J. Giráldez. 2001. Separation methods for camptothecin and related compounds. Journal of Chromatography B: Biomedical Sciences and Applications 764:141-159.
105. Zuo, Y., H. Chen and Y. Deng. 2002. Simultaneous determination of catechins, caffeine and gallic acids in green, oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 57:307-316.
106. 余威廷。2005。由喜樹葉中分離喜樹鹼之研究。碩士論文。台灣:南台科技大學生物科技研究所。
107. 林木連、蔡右任、張清寬、陳國任、楊盛勳、陳英玲、賴正南、陳玄、張如華。2003。各種茶類的製造方法。臺灣的茶葉。初版,92-113。台灣: 遠足文化。
108. 蘇登照。2009。台灣茶葉生產現況與輔導措施。農政與農情。201:68-72.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44857-
dc.description.abstract在分離電泳液中添加界面活性劑的微胞毛細管電泳技術已廣泛應用於帶電與不帶電分析物的檢測,然而受限分析物於分離電泳液中的溶解度,此技術無法運用於高疏水性、非水溶性的分析物檢測;是以本論文針對植物組織中可溶於水與非水溶性的疏水性植物二次代謝物分別提出快速萃取,其過濾後萃取液直接注入毛細管中的微胞毛細管電泳法開發。依研究對象物,本論文可分為茶品中的生物鹼與多元酚含量及熱帶藥用作物「青脆枝」中的抗癌藥物-喜樹鹼含量之微胞毛細管電泳法開發。
第一部分以80 oC、50 ml的熱水進行乾燥茶葉(500 mg)萃取10分鐘,其萃取液經孔徑0.45 um的硝化纖維膜進行過濾,再添加去離子水定量至100 ml。將茶湯樣品溶液注入於含pH 7.0, 10 mM磷酸緩衝溶液、4 mM硼酸緩衝溶液、45 mM SDS、0.5 %酒精的分離電泳液之融熔矽毛細管中(內徑50 um、總長47 cm),並於毛細管兩端施與20 kV電壓進行分離,約在8分鐘內可得到高理論板數(>55,000)的7種兒茶素類分子、3種茶鹼類分子、茶胺酸、沒食子酸、維他命C與茶黃素之分離電泳圖;其樣品分子間解析度皆大於2、分離電流約為33 uA,而茶鹼類與兒茶素類分子的線性檢測範圍則落在2.5至100 ug ml-1 (S/N>5)之間。
從不同室內萎凋時間的部分發酵茶-包種茶之分離電泳圖中,可得知維他命C、兒茶素類分子會隨室內萎凋時間增長而減少,而沒食子酸則會隨室內萎凋時間增長而增加;藉由兒茶素類分子總量之減少百分比可計算出茶葉製程品管指標-發酵度。本研究同時以電位儀搭配白金電極、參考電極來量測不同室內萎凋時間的茶品之氧化還原電位,其氧化還原電位與不同室內萎凋時間的茶品發酵度呈現高度正相關。
第二部分則以高沸點(b.p. 189 oC)、高喜樹鹼溶解度、非質子性的Dimethyl Sulfoxide (DMSO)有機溶劑來直接加熱萃取(60 oC × 30 min)青脆枝中非極性、非水溶性的喜樹鹼(約1 ml DMSO有機溶劑萃取100 mg青脆枝)。由於DMSO有機溶劑有高介電常數(47.2)且會與水互溶之特性,因此並不會影響毛細管內的電滲透流的產生。將過濾後萃取液與緩衝溶液進行混合,可直接注入於含高DMSO濃度的分離電泳液(pH 8.6, 10 mM硼酸緩衝溶液、90 mM SDS、20 % DMSO)之融熔矽毛細管中(內徑75 um、總長34 cm),並於毛細管兩端施與16 kV電壓進行分離,約在4.5分鐘內可得到高理論板數(>25,000)的喜樹鹼、9-甲氧基喜樹鹼、葫蘆巴鹼之分離電泳圖,其解析度大於2、分離電流約為77 uA;而喜樹鹼線性檢測範圍為5至400 ug ml-1 (S/N>5)。
zh_TW
dc.description.abstractCapillary electrophoresis (CE) is a convenient and rapid analytical method, but the usage is generally restricted in water soluble and charged compounds. Electrophoresis by the aid of surfactants added in the running buffer, namely micellar electrokinetic capillary electrophoresis (MEKC), has successfully expanded the application to uncharged compounds, but it still can not handle with highly hydrophobic and water-insoluble materials. In this dissertation, two direct-injection capillary electrophoresis procedures were developed for determining hydrophobic secondary metabolites in plant tissues: (1) polyphenols in tea infusions; and (2) the anti-cancer alkaloids, camptothecins (CPT), in Nothapodytes foetida, a tropical medicinal plant.
The first approach used hot water (80 oC for 10 min) to extract dried tea leaves (500 mg / 50 ml); the extract was filtered through a 0.45 um nitrocellose filter membrane, filled up with deionized water to 100 ml and directly injected into the separation capillary (untreated fused silica, 47 cm in length, 50 um i.d.). The sample plug was separated in MEKC mode (20 kV, running buffer: 10 mM phosphate, 4 mM sodium tetraborate, 45 mM SDS and 0.5 % ethanol, pH 7.0) and detected with photodiode array (200, 266 nm, Agilent). Several important tea quality-relating chemicals including caffeine, theanine (the umami factor), vitamin C (the freshness factor) and polyphenols (namely tea catechins, the astringency factor) can be simultaneously determined within 8 min of migration time. The linear dynamic ranges for tea catechins were from 2.5 (S/N >8) to 100 ug ml-1.
Using the rapid analytical method, the fermentation process (indoor withering) of pouching tea (a Taiwanese Oolong tea with mild fermentation) was monitored. From the electropherograms, tea catechins can be quantified and were found to be depleted during the indoor withering process. Therefore, not only the conventional quality factors such as theanine, we also successfully estimated the fermentation degrees during the tea making process. That is a crucial quality factor of tea industry but hard to obtain using traditional analytical strategy. The results were compared with the redox potential method developed in our department.
The second approach dealt with a non-polar anti-cancer compound (camptothecin) in dried plant tissues; the chemical is water insoluble and therefore can not be analyzed by capillary electrophoresis even in MEKC mode. We are the first group to introduce an aprotic, water miscible organic solvent (dimethyl sulfoxide, DMSO) into the running buffer of CE to facilitate the separation (20 % DMSO, 90 mM SDS in 10 mM borate buffer, pH 8.60). DMSO is an excellent solvent with high dielectric constant (47.2) and the electroosmotic flow was therefore not hampered. Moreover, it possesses a high boiling point, so CPT can be easily extracted (c.a. 1 ml of DMSO for 100 mg of dried plant tissue) at elevated temperature (60 oC for 30 min) without using reflux apparatus. The filtered extract was directly injected into the separation capillary (untreated fused silica, 34 cm in length, 75 um i.d.) and analyzed in MEKC mode (16 kV, 369 nm). Within 5 min of migration, camptothecins were successfully separated and quantified with linear dynamic range from 5 to 400 ug ml-1.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:56:37Z (GMT). No. of bitstreams: 1
ntu-99-F92631001-1.pdf: 10995576 bytes, checksum: 48d5d17f325127a657123ca44d4cbe99 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
目 錄 vii
圖 目 錄 xi
表 目 錄 xiii
字 詞 縮 寫 xiv
第一章 前言 1
第二章 文獻探討 3
2.1 毛細管電泳(Capillary Electrophoresis, CE) 3
2.1.1 毛細管電泳發展史 3
2.1.2 毛細管電泳儀的基本構造 5
2.1.3 毛細管電泳分離原理 6
2.1.3.1 電泳原理 8
2.1.3.2 電滲透流形成原理與特性 9
2.1.4 影響毛細管電泳分離效率的因素 11
2.1.4.1 緩衝溶液的選擇 11
2.1.4.2 電壓與電場強度 11
2.1.4.3 毛細管內徑大小 12
2.1.4.4 添加劑 12
2.1.5 毛細管電泳分析操作模式 14
2.1.5.1 毛細管區帶電泳法 14
2.1.5.2 微胞毛細管電泳法 14
2.1.5.3 毛細管凝膠電泳法 16
2.1.5.4 毛細管電動層析法 17
2.1.5.5 毛細管等電聚焦電泳法 18
2.2 不同發酵度茶品之茶鹼類、兒茶素類分子的快速毛細管電泳法開發 19
2.2.1 台灣與全球茶葉產業之現況 19
2.2.2 生長環境、製茶程序、萎凋過程對茶葉品質相關分子的影響 21
2.3 青脆枝中喜樹鹼含量的快速毛細管電泳法開發 29
2.3.1 青脆枝及其天然物成分簡介 29
2.3.2 喜樹鹼及其衍生物簡介 31
2.3.3 喜樹鹼的分布 33
2.3.4 喜樹鹼的萃取 34
第三章 實驗設備與方法 37
3.1 實驗藥品與儀器設備 37
3.1.1 實驗藥品 37
3.1.2 儀器設備 37
3.2 不同發酵度的茶品之茶鹼類、兒茶素類分子的快速毛細管電泳法開發 39
3.2.1 標準混和溶液配置 39
3.2.2 未發酵綠茶、部分發酵包種茶、完全發酵紅茶的樣品製備 39
3.2.3 茶品萃取液配置 41
3.2.4 以毛細管電泳法檢測茶品萃取液 41
3.2.5 以氧化還原電位檢測茶品萃取液 42
3.3 青脆枝中喜樹鹼含量的快速毛細管電泳法開發 43
3.3.1 青脆枝樣品前處理 43
3.3.2 緩衝溶液與喜樹鹼標準溶液配置 43
3.3.3 以DMSO萃取青脆枝之喜樹鹼 43
3.3.4 以甲醇萃取青脆枝之喜樹鹼 43
3.3.5 以毛細管電泳法檢測喜樹鹼萃取液 44
第四章 結果與討論 45
4.1 以微胞毛細管電泳法與氧化還原電位法檢測茶品發酵度 45
4.1.1 茶湯常見茶胺酸、維他命C、茶鹼類、兒茶素類、沒食子酸、茶黃素分子的紫外光吸收光譜特性 45
4.1.2 微胞毛細管電泳分離標準混合液的最佳化條件探討 47
4.1.2.1 電泳液的硼酸離子濃度對標準混合液之電泳分離影響 47
4.1.2.2 電泳液的SDS濃度對標準混合液之電泳分離影響 51
4.1.2.3 電泳液的酒精濃度對標準混合液之電泳分離影響 52
4.1.3 標準混合液的毛細管電泳分離最佳化條件 55
4.1.4 不同發酵度茶葉的組成成份分析及其發酵度分析 58
4.1.5 室內萎凋時間與發酵度對氧化還原電位之影響 62
4.2 青脆枝中喜樹鹼含量的快速毛細管電泳法開發 64
4.2.1 喜樹鹼的溶解度與穩定度 64
4.2.2 喜樹鹼的紫外光吸收光譜特性 65
4.2.3 以毛細管區帶電泳分離喜樹鹼溶液與青脆枝的DMSO萃取液 66
4.2.4 以微胞毛細管電泳法分離喜樹鹼溶液與青脆枝的DMSO萃取液 68
4.2.5 青脆枝萃取液之微胞毛細管電泳分離最佳化條件 70
4.2.6 青脆枝的DMSO萃取條件最佳化及甲醇萃取流程的比較 73
第五章 結論 75
參考文獻 76
附錄一: 於2004年發表於Macromolecular Bioscience所發表論文 84
附錄二: 於2006年發表於Journal of Food and Drug Analysis所發表論文 85
附錄三: 於2006年發表於Bioelectrochemistry所發表論文 86
附錄四: 於2008年發表於Phytochemical Analysis所發表論文 87
附錄五: 於2008年發表於Analytica Chimica Acta所發表論文 88
附錄六: 於2009年發表於Sensors and Actuators B所發表論文 89
附錄七: 於2009年發表於Review of Scientific Instrument所發表論文 90
附錄八: 於2010年發表於Food Chemistry所發表論文 91
附錄九: 於2010年發表於Microchimica Acta所發表論文 92
dc.language.isozh-TW
dc.subject黃酮zh_TW
dc.subject樣品前處理zh_TW
dc.subject生物鹼zh_TW
dc.subject多酚zh_TW
dc.subject氧化還原電位zh_TW
dc.subjectsample pretreatmenten
dc.subjectredox potentialen
dc.subjectflavonoiden
dc.subjectpolyphenolen
dc.subjectalkaloiden
dc.title以微胞毛細管電泳法檢測植物組織中的疏水性二次代謝物zh_TW
dc.titleDetermination of Hydrophobic Secondary Metabolites in Plant Tissues by Micellar Electrokinetic Capillary Electrophoresisen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭宗記(Tzong-Jih Cheng),黃怡仁(I-Jen Huang),楊寄明(Ge-Ming Yang),鄭作林(Tso-Lin Cheng)
dc.subject.keyword生物鹼,多酚,黃酮,樣品前處理,氧化還原電位,zh_TW
dc.subject.keywordalkaloid,polyphenol,flavonoid,sample pretreatment,redox potential,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2010-06-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
10.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved