請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44851完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝志誠(Jyh-Cherng Shieh) | |
| dc.contributor.author | Ting-Hsi Wu | en |
| dc.contributor.author | 巫廷璽 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:56:27Z | - |
| dc.date.available | 2013-07-26 | |
| dc.date.copyright | 2010-07-26 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-21 | |
| dc.identifier.citation | 1. 趙桂蓉。1990。冒泡泡之分子篩-沸石在觸媒界之應用。科學月刊全文資料庫, 第250期。
2. 劉致中。2008。生質精煉產業之發展現況與前景。ITIS產業資訊網。 3. 行政院環境保護署。2007。車用汽柴油成分及性能管制標準。環署空字第0930089773號。 4. Aguayo, A. T., A. G Gayubo, A. M Tarrı’o, A. Atutxa, J. Bilbao, 2002. Study of operating variables in the transformation of aqueous ethanol into hydrocarbons on an HZSM-5 zeolite. Journal of Chemical Technology and Biotechnology 77: 211-216. 5. Aguayo, A. T., A. G. Gayubo, A. Atutxa, B. Valle, J. Bilbao, 2005. Regeneration of a HZSM-5 zeolite catalyst deactivated in the transformation of aqueous ethanol into hydrocarbons. Catalysis Today 107-108: 410-416 . 6. Anderson, J. R., K. Foger, T. Mole, R. A. Rajadhyaksha, J. V. Sanders, 1979. Reactions on ZSM-5-Type Zeolite Catalysis. Journal of Catalysis, 58: 144-130. 7. Barthos, R., A. Szchenyi, F. Solymosi, 2006. Decomposition and Aromatization of Ethanol on ZSM-Based Catalysts. The Journal of Physical Chemstry B 110(43): 21816-21825. 8. Behrsing, T., H. Jaeger, J.V. Sanders, 1989. Coke Deposits on H-ZSM-5 Zeolite. Applied Catalysis, 54 (3): 289-302 9. Benito, P. L., A. G. Gayubo, A. T. Aguayo, M. Olazar, J. Bilbao, 1996. Effect of Si/Al ratio and of acidity of H-ZSM5 zeolites on the primary- products of methanol to gasoline conversion. Journal of Chemical Technology and Biotechnology 66:183-191. 10. Calsavara, V., M. L. Baesso, N. R. C. Fernandes-Machado, 2008. Transformation of ethanol into hydrocarbons on ZSM-5 zeolites modified with iron in different ways. Fuel 87: 1628-1636. 11. Campbell, S. M., D. M. Bibby, J. M. Coddington, R. F. Howe, 1996. Dealumination of HZSM-5 Zeolites:Ⅱ. Methanol to Gasoline Conversion. Journal of Catalysis 161 : 350-358. 12. Chang, C. D., A. J. Silvestri, 1977. The Conversion of Methanol and Other O-Compounds to Hydrocarbons over Zeolite Catalysts. Journal of Catalysis 47: 249-259. 13. Chen, M, L. Xia, P. J. Xue. 2007. Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. International Biodeterioration and Biodegradation 59: 85-89. 14. Costa, E., A. Uguina, J. Aguado, P. J. Hernandez, 1985. Ethanol to gasoline process: Effect of Variables, Mechanism, and Kinetics. Industrial & Engineering Chemistry Process Design 24(2): 239-244. 15. Davis, S. C., S. W. Deigel, R. G. Boundy, 2009. Transportation energy data book: Edition 28. Office of Energy Efficiency and Renewable Energy. U.S. Department of Energy. 16. De Lucas, A., P. Canizares, A. Duran, 2001. Improving deactivation behavior of HZSM-5 catalysts. Applied Catalysis A General 206: 87-93. 17. Derouane, E. G., J. B. Nagy, P. Dejaifve, J. H. C. Van Hooff, B. P. Speakman, J. C. Vjzdrine, C. Naccache, 1978. Elucidation of the Mechanism of Conversion of Methanol and Ethanol to Hydrocarbons on a New Type of Synthetic Zeolite. Journal of Catalysis 53: 40-55. 18. Ferreira Madeira, F., N. S. Gnep, P. Magnoux, S. Maury, N. Cadran, 2009. Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar BrOnsted acidity. Applied Catalysis A: General 367:39–46 19. Gallezot, P., C. Leclercq, M. Guisnet, P. Magnoux, 1988. Coking, Aging, and Regeneration of Zeoites:Ⅶ. Electron Microscopy and EELS Studies of External Coke Deposits on USHY, H-OFF, and H-ZSM-5 Zeolites. Journal of Catalysis 114: 100-111. 20. Gayubo, A. G., P. L. Benito, A. T. Aguayo, M. Olazar, J. Bilbao, 1996. Relationship between surface aciditv and activity of catalysts in the transforhation of methanol into hydrocarbons. Journal of Chemical Technology and Biotechnology 65:186-192. 21. Gayubo, A. G., A. M. Tarrı’o, A. T. Aguayo, M. Olazar, J. Bilbao. 2001. Kinetic Modelling of the Transformation of Aqueous Ethanol into Hydrocarbons on a HZSM-5 Zeolite. Industrial & Engineering Chemistry Research 40(16): 3467-3474. 22. Gujar, A. C., V. K. Guda, M. Nolan, Q. Yan, H. Toghiania. M. G. White. 2009. Reactions of methanol and higher alcohols over H-ZSM-5. Applied Catalysis A: General 363:115-121. 23. Inaba, M., K. Murata , M. Saito, I. Takahar, 2006. Ethanol conversion to aromatic hydrocarbons over several zeolite catalysts. Reaction Kinetics and Catalysis Letters 88(1): 135-142. 24. Inaba, M., K.Murata, I. Takahara, 2009. Effect of Fe-loading and reaction temperature on the production of olefins from ethanol by Fe/H-ZSM-5 zeolite catalysts. Reaction Kinetics and Catalysis Letters 97: 19-26. 25. Johansson, R., S. L. Hruby, J. R. Hansen, C, H. Christensen, 2009. The Hydrocarbon Pool in Ethanol-to-Gasoline over HZSM-5 Catalysts. Catalysis Letters 127: 1-6. 26. Kokotailo, G. T., S. L. Lawton, D. H. Olson, W. M. Meiler, 1978. Structure of synthetic zeolite ZSM-5. Natural 272(30): 437-438. 27. Kumabe, K., S. Fujimoto, T. Yanagida, M. Ogata, T. Fukuda, A. Yabe, T. Minowa. 2008. Environmental and economic analysis of methanol production process via biomass gasification. Fuel 87(7): 1422-1427. 28. Ladisch, M. R., K. Dyck, 1979. Dehydration of ethanol- New approach gives positive energy balance. Science 205(4409): 898-900 29. Linde M., M. Galbe, G. Zacchi, 2008. Bioethanol production from non-starch carbohydrate residues in process streams from a dry-mill ethanol plant. Bioresource Technology 99: 6505-6511 30. Makarfi Y. I., M. S. Yakimova, A. S. Lermontov, V. I. Erofeev, L. M. Koval, V. F. Tretiyakov, 2009. Conversion of bioethanol over zeolites. Chem. Eng. J., In Press, Corrected Proof, Available online 10 June 2009. 31. Maiorella, B. L., 1982. Fermentation alcohol: better to convert to fuel. Hydrocarbon Processing, August: 95-97. 32. Marcilla, A., M. I. Beltra’n, R. Navarro, 2005. Effect of regeneration temperature and time on the activity of HUSY and HZSM 5 zeolites during the catalytic pyrolysis of poly乙烯. Journal of Analytical and Applied Pyrolysis 74: 361–369. 33. Meisel, S. L., J. P. McCullough, C. H. Lechthaler, P. B. Weiss, 1976. Gasoline from methanol in one step. Chemische Technik 6(2): 86-89. 34. Mentzel, U. V., S. Shunmugavel, S. L. Hruby, C. H. Christensen, M. S. Holm. 2009. High Yield of Liquid Range Olefins Obtained by Converting i-Propanol over Zeolite H-ZSM-5. Journal of the American Chemical Society 131(46):17009-13. 35. Mores, D., E. Stavitski, M. H. F. Kox, J. Kornatowski, U. Olsbye, B. M. Weckhuysen, 2008. Space- And time-resolved in-situ spectroscopy on the coke formation in molecular sieves: Methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Chemistry - A European Journal 14 (36): 11320-11327. 36. Murata, K., M. Inaba, I. Takaha, 2008. Effects of surface modification of H-ZSM-5 catalysts on dirct transformation of ethanol into lower olefins. Journal of Japan Petroleum Institute 51(4): 234-239. 37. Packer, J., 2005. The Production of Methanol and Gasoline. New Zealand Institute of Chemisty: Ⅶ-Energy-D-Methanol-19. 38. Ramesh, K., L. M. Hui, Y. F. Han, A. Borgna, 2009. Structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration. Catalysis Communications 10:567–571. 39. Pimentel, D., T. W. Patzek, 2005. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. Natural Resources Research 14(1):65-76. 40. Schulz, J., F. Bandermann, 1993. Conversion of Ethanol over Metal-exchanged Zeolites. Chemical Engineering & Technology 16:332-337. 41. Schulz, J., F. Bandermann, 1994. Conversion of Ethanol over Zeolite H-ZSM-5. Chemical Engineering & Technology 17: 179-186. 42. Song, Z., A. Takahashi, N. Mimura, T. Fujitani, 2009. Production of propylene from ethanol over ZSM-5 zeolites. Catalysis Letters 131(3-4): 364-369. 43. Sun, Y. and J. Y. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83:1-11. 44. Talukdar, A. K., K. G. Bhattacharyya, S. Sivasanker, 1997. HZSM-5 catalysed conversion of aqueous ethanol to hydrocarbons. Applied Catalysis A General 148: 357-371. 45. Torren R. C., Tushar P. Vispute, and George W. Huber, 2008. Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived Compounds. ChemSusChem 1: 397-400. 46. Whitcraft, D. R., X. E. Veryklos, R. Yutharasan, 1983. Recovery of Ethanol from Fermentation Broths by Catalytic Conversion to Gasoline. Industrial & Engineering Chemistry Process Design 22(3): 452-457. 47. Zaldivar, J., J. Nielsen, L. Olsson, 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integratio. Appl. Microbiol Biotechnol 56:17–34 48. Zhang, X., R. Wang, X. Yang, F. Zhang, 2008. Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. Microporous and Mesoporous Materials 116: 210–215. 49. IUPAC, 1972. Manual of symbols and terminology colloid and surface chemistry. Pure and Applied Chemistry 31(4): 579-638. 50. Energy Information Administration, U.S. Department of Energy, 2009. Annual Energy Outlook 2009 With Projections to 2030. 51. Spath, P.L., D.C. Dayton, 2003. Preliminary Screening —Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas. National Renewable Energy Labortory, U. S. Department of Energy Laboratory. 52. NZIC, 2009. The New Zealand Institute of Chemistry (NZIC) website: Chemical Processes in New Zealand> Energy> The Production of Methanol and Gasoline. Available at: http://nzic.org.nz/ChemProcesses/energy/7D.pdf. Accessed 9 October 2009. 53. Sugiyama, T., 1994. An Analysis of Alternative Fuels Promotion: The Case od Synthetic Gasoline Production in New Zealand. Massachusetts Institute of Technology. 54. Butter, S. A., A. T. Jurewicz, W. W. Kaeding, 1975. Conversion of alcohols, mercaptans, sulfides, halides and/or amines. U. S. Patent No. 3,894,107. 55. Chang, C. D., H. L. William, 1975. Conversion of Alcohols and Ethers to Hydrocarbons. U. S. Patent No. 3,899,544.. 56. Chang, M. M., G. T. Tsao,A. W. Anderson, 1986. Hydrocarbon Production. U. S. Patent No. 4,621,164. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44851 | - |
| dc.description.abstract | 本研究利用觸媒HZSM-5(Si/Al = 45)將含水乙醇轉換成以液態產物為主之碳氫化合物。首先,探討進料含水率、重量時空速度(WHSV)、溫度與壓力對產物選擇性之影響,找出最適液態產物之反應條件,再於該條件下,進行不同方式之長時間反應-再生-反應試驗,探討觸媒之活性與使用效率。結果顯示:液態產物之選擇性隨含水率之增加而下降,含水率高於60%(w/w)則更顯著,即過高之含水率除不利於脫水反應外,亦不利於液態產物,故以28%(w/w)之含水率作為選擇最適反應條件之料源。WHSV越高,進料在反應器內駐留時間越短,低分子量之中間產物沒能來得及完成聚合反應,導致液態產物選擇性降低。提高壓力可增加反應速度,亦可提高產率,即提高反應壓力,有助於聚合反應之催化活性。提高壓力雖有助於液態產物,然在過高壓力下,高碳數產物縮合而成之高黏性結焦,一經吸附在觸媒表面即不易揮發移除,或於移除過程連帶破壞觸媒之活性部位,導致觸媒活性降低,甚至壽命終止。綜合來看,最適液態產物之反應條件為重量時空速度 = 4.30 h-1、溫度350˚C、壓力60 kg/cm2。在最適條件下,液態產物產率可達30.7%,為碳氫化合物理論產率之70%。
長時間反應-再生-反應試驗顯示,觸媒之活性雖可經再生程序予以回復,卻無法完全回復。於反應期間採定時及以液態產物選擇性低於10%作為啟動觸媒再生程序之指標者,相較於僅以液態產物選擇性低於10%作為指標者,雖無法改善觸媒之使用壽命,卻可提高觸媒之使用效率10%以上。 產物之品質,經由與中油公司市售之九五無鉛汽油比較,本研究所得之液態產物與市售九五無鉛汽油成份相近。 | zh_TW |
| dc.description.abstract | The purpose of this study is using catalyst HZSM-5 (Si/Al=45) to convert aqueous ethanol to liquid type hydrocarbon. Four parameters including moisture content, weight hourly space velocity (WHSV), temperature and pressure were studied for the selectivity of products. Then the optimal ones were applied in the operating of long term reaction-regeneration experiments to examine the activity and efficiency of catalyst.
The results showed that, the selectivity of liquid products was affected by moisture content especially when the moisture content was over 60% (w/w). That is, in excess moisture content, it was not suitable for the dehydration of ethanol. Therefore, 72% (w/w) ethanol was selected for the optimal feeding in the study. Furthermore, the more the WHSV, the shorter the contacting time in the reactor and in the meantime the incomplete polymerization made the selectivity of liquid products decreased. The yield of liquid products increased with the rising pressure. The catalyst deactivated and damaged due to the coke with high carbon on the surface. In summary, the oil quality synthesized in this test was familiar with the commercial 95 unleaded gasoline from CPC. The optimal parameters were WHSV=4.30 h-1, 350˚C and 60 kg/cm2. The yield of liquid products and theoretical yield of hydrocarbon could be achieved 30.7% and 70% respectively. The long term reaction-regeneration experiments showed the catalyst activity could not be completely regenerated. It could provide over 10% the selectivity of liquid products by using both constant time and limited selectivity of liquid products as the indicators in comparing with that just using limited selectivity of liquid product as the indicator. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:56:27Z (GMT). No. of bitstreams: 1 ntu-99-R97631029-1.pdf: 1020330 bytes, checksum: 6e3d380c5353f1622bd3f7cb22c5e3c8 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 前言與研究目的 1 第二章 文獻探討 4 2-1 甲醇產製汽油(METHANOL TO GASOLINE,MTG) 4 2-2 沸石觸媒 7 2-2-1 沸石 7 2-2-2 ZSM-5型沸石 8 2-3 乙醇產製汽油(ETHANOL TO GASOLINE,ETG) 9 2-4 影響ETG之因子 10 2-4-1 觸媒之物化性質 11 2-4-2 反應條件 14 2-5 ZSM-5觸媒失活之探討 15 2-6 ETG化學反應途徑 16 第三章 研究方法 19 3-1 實驗材料與設備 19 3-2 產物收集、分類及分析 21 3-2-1 分析方法 22 3-2-2 標準品定性 24 3-2-3 芳香烴總量分析方法 24 3-3 觸媒催化反應 29 3-3-1 觸媒前處理 30 3-3-2 觸媒之再生程序 31 3-4 長時間催化反應-再生-反應試驗 32 第四章 結果與討論 33 4-1 含水率之影響 33 4-2 WHSV之影響 36 4-3 反應溫度之影響 38 4-4 反應壓力之影響 39 4-5 長時間反應之影響及再生性之探討 43 4-6 產物之品質分析 48 第五章 結論 50 參考文獻 51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 乙醇 | zh_TW |
| dc.subject | 沸石觸媒 | zh_TW |
| dc.subject | 汽油 | zh_TW |
| dc.subject | HZSM-5 | en |
| dc.subject | Methanol to gasoline | en |
| dc.subject | Ethanol to gasoline | en |
| dc.title | 利用HZSM-5沸石轉換含水乙醇製成汽油 | zh_TW |
| dc.title | Conversion of Aqueous Ethanol to Gasoline over HZSM-5 Zeolite | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周楚洋(Chu-Yang Chou),李允中(Yeun-Chung Lee) | |
| dc.subject.keyword | 沸石觸媒,乙醇,汽油, | zh_TW |
| dc.subject.keyword | HZSM-5,Methanol to gasoline,Ethanol to gasoline, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-06-21 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 996.42 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
