Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 語言學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44837
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃居仁(Chu-Ren Huang),安可思(Kathleen Ahrens)
dc.contributor.authorJia-Fei Hongen
dc.contributor.author洪嘉馡zh_TW
dc.date.accessioned2021-06-15T03:56:07Z-
dc.date.available2010-06-28
dc.date.copyright2010-06-28
dc.date.issued2010
dc.date.submitted2010-06-23
dc.identifier.citationAhrens, Kathleen. 2006. “The Effect of Visual Target Presentation Times on Lexical Ambiguity Resolution.” Language and Linguistics, 7(3): 677–696.
Ahrens, Kathleen, Huang Chu-Ren and Shirley Chuang. 2003. “Sense and Meaning Facets in Verbal Semantics: A MARVS Perspective.” Language and Linguistics, 4(3): 468-484.
Ahrens, Kathleen. 2001. “On-line Sentence Comprehension of Ambiguous Verbs in Mandarin.” Journal of East Asian Linguistics, 10/4: 337–358.
Ahrens, Kathleen. 1998. “Lexical Ambiguity Resolution: Languages, Tasks and Timing.” In Sentence Processing: A Cross-linguistic Perspective. (Ed.) Dieter Hillert. Academic Press, pp.11–31.
Bolette, Sandford Pedersen.1997. “Lexical ambiguity in machine translation: Using Frame Semantics for expressing regularities in polysemy”. Nicolas Nicolov and Ruslan Mitkov (eds.). Recent Advances in Natural Language Processing II. Tzigov Chark, Bulgaria, pp. 207-220.
Buscaldi, Davide, Paolo Rosso, and Emilio Sanchis. 2007. “A WordNet-Based Indexing Technique for Geographical Information Retrieval”. Peters et al. (Eds.): CLEF 2006, LNCS 4730, pp. 954–957.
Canas, Alberto J.,Alejandro Valerio, Juan Lalinde-Pulido, Marco Carvalho, and Marco Arguedas. 2003. “Using WordNet for Word Sense Disambiguation to Support Concept Map Construction.” Paper presented at SPIRE 2003—10th International Symposium on String Processing and Information Retrieval, Oct. 2003, Manaus, Brazil, pp. 350-359.
Chao, Gerald and Michael G Dyer. 2002. “Maximum Entropy Models for Word Sense Disambiguation.” Proceedings of the 19th International Conference on Computational Linguistics. Taipei, Taiwan, pp. 155–161.
Chen, Hao, Tingting He, Donghong Ji, and Changqin Quan. 2005. “An Unsupervised Approach to Chinese Word Sense Disambiguation Based on Hownet.” Computational Linguistics and Chinese Language Processing. 10:4, pp. 473–482.
Chen, Hsin-Hsi, Guo-Wei Bian, and Wen-Cheng Lin. 1999. “Resolving Translation Ambiguity and Target Polysemy in Cross-Language Information Retrieval.” International Journal of Computational Linguistics and Chinese Language Processing, 4(2), August 1999, pp. 21–38.
Chen, Jen Nan and Jason S. Chang. 1998. “Topical Clustering of MRD Senses.” Computational Linguistics, 24(1): 61–95.

Chen, Jinying, and Martha Palmer. 2009. Improving English Verb Sense Disambiguation Performance with Linguistically Motivated Features and Clear Sense Distinction Boundaries. Language Resources and Evaluation. 43 (2):181–208, Springer Netherlands: SemEval2007, 2009.
Chung, Siaw-Fong and Kathleen Ahrens. Forthcoming. 2008. “MARVS Revisited: Incorporating Sense Distribution and Mutual Information into Near-Synonym Analyses. Language and Linguistics. 9.2:415-434.
Cottrell, Garrison W. 1984. 'A model of lexical access of ambiguous words.' Proceedings of the National Conference on Artificial Intelligence, Austin, TX, Aug. 6-10. (pp. 61-67) One of twelve papers nominated for the AAAI Publisher's Prize.
Cruse, Alan. 2004. Meaning in Language: An Introduction to Semantics and Pragmatics. (Second edition.) Oxford: Oxford University Press.
Cruse, Alan. 1986. Lexical Semantics. Cambridge: Cambridge University Press.
Dai, Liu-Ling, Bin Liu, Yuning Xia, and Shi-Kun Wu. 2008. “Measuring Semantic Similarity between Words Using HowNet.” International Conference on Computer Science and Information Technology, pp. 601–605.
Dictionary editing team of Institute of Linguistics in Chinese Academy of Social Sciences (Ed.). 2005. Xiandai Hanyu Cidian. (The fifth edition). Beijing:The Commercial Press.
Dong, Zhen-Dong, Dong, Qiang. 2000. HowNet Knowledge Database, http:// www.keenage.com.
Dong, Zhen-Dong and Qiang Dong. 2006. HowNet and the Computation of Meaning. World Scientific Publishing.
Elston-Guttler, Kerrie E. and Angela D. Friederici. 2006. “Ambiguous words in sentences: Brain indices for native and non-native disambiguation.” Neuroscience Letters, 414: 85–89.
Fellbaum, Christiane. 2000. Autotroponomy. Polysemy: Theoretical and computational approaches, ed. by Yael Ravin, and Claudia Leacock, 52-67. New York: Oxford University Press.
Fellbaum, Christiane (Ed.). 1998. WordNet: An electronic lexical database. Cambridge, MA: MIT Press.
Fillmore, Charles J., and Beryl T.S. Atkins. 2000. Describing polysemy: The case of ‘crawl.’ Polysemy: Theoretical and computational approaches, ed. by Yael Ravin, and Claudia Leacock, 91-110. New York: Oxford University Press.
Fujii, Hideo and Croft, W. Bruce. 1993. A Comparison of Indexing Techniques for Japanese Text Retrieval. Proceedings of the Sixteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 237-246.
Ganesh, Ramakrishnan, B. P. Prithviraj, A. Deepa, Pushpak Bhattacharyya, and Soumen Chakrabarti. 2004. Soft Word Sense Disambiguation. Proceedings of the Second Global Wordnet Conference 2004, pp. 291–298.
Geeraerts, Dirk. 1993. Vagueness’s puzzles, polysemy’s vagaries. Cognitive Linguistics, 4.3: 223-272.
Goddard, Cliff. 2000. Polysemy: A Problem of Definition. Polysemy: Theoretical and computational approaches, ed. by Yael Ravin, and Claudia Leacock, 91-110. New York: Oxford University Press.
Gunter, Thomas C., Susanne Wagner, and Angela D. Friederici. 2003. Working Memory and Lexical Ambiguity Resolution as Revealed by ERPs: A Difficult Case for Activation Theories. Journal of Cognitive Neuroscience. 15.5: pp. 643–657.
Huang, Chih Ying. 2009. Lateralization of the sense effect in reading Chinese disyllabic compounds: an event-related potential study. Master's thesis. National Chengchi University, Taipei, Taiwan.
Huang, Chu-Ren, Elanna I. J. Tseng, Dylan B. S. Tsai, and Brian Murphy. 2003. “Cross-lingual Portability of Semantic Relations: Bootstrapping Chinese WordNet with English WordNet Relations.” Languages and Linguistics. 4.3: 509–532.

Huang, Chu-Ren, Chao-Ran Chen and Claude C.C. Shen. 2002. The Nature of Categorical Ambiguity and Its Implications for Language Processing: A Corpus-based Study of Mandarin Chinese. In Mineharu Nakayama (Ed.) Sentence Processing in East Asian Languages. Stanford: CSLI Publications.
Huang, Chu-Ren, Kathleen Ahrens, Chang Li-Li, Chen Keh-Jiann, Liu Mei-Chun, and Tsai Mei-Chih. 2000. “The Module-Attribute Representation of Verbal Semantics: From Semantics to Argument Structure.” In Biq (ed.) Special Issue on Chinese Verbal Semantics. Computational Linguistics and Chinese Language Processing. 5.1: 19-46.
Hong, Jia-Fei, Chu-Ren Huang and Kathleen Ahrens. 2008. Event Selection and Coercion of Two Verbs of Ingestion: A MARVS perspective. International Journal of Computer Processing of Oriental Language (IJCPOL). 21.2: 29-40. Singapore.
Hong, Jia-Fei, Kathleen Ahrens and Chu-Ren Huang. 2008. The Polysemy of Da3: An ontology-based study. Presented at the 9th Chinese Lexical Semantics Workshop (CLSW 2008), pp. 51-64. Singapore: National University of Singapore. July, 13-16.

Hong, Jia-Fei, Chu-Ren Huang and Kathleen Ahrens. 2007. The Polysemy of Da3: An ontology-based lexical semantic study. In the Proceedings of the 21st Pacific Asia Conference on Language,Information and Computation (PACLIC 21). November 1-3, Seoul National University. pp. 155-162.
Hong, Jia-Fei and Chu-Ren Huang 2006. “Using Chinese Gigaword Corpus and Chinese Word Sketch in Linguistic Research.” Proceedings of the 20th Pacific Asia Conference on Language, Information and Computation. Wuhan, China, November 1–3.
Ide, Nancy and Jean Véronis. 1998. “Word Sense Disambiguation: The State of the Art.” Computational Linguistics, 1998, 24(1): 1–40.
Jackendoff, Ray. 1983. Semantics and Cognition. Cambrige: MIT Press.
Jiang, Jay J. and David W. Conrath. 1997. “Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy.” In Proceedings of International Conference Research on Computational Linguistics (ROCLING X), Taiwan.
Karov, Yael and Shimon Edelman. 1998. “Similarity-based Word Sense Disambiguation.” Computational Linguistics, 24(1): 41–59.
Ker, Sue-Jin, Chu-Ren Huang, Jia-Fei Hong, Shi-Yin Liu, Hui-Ling Jian, I-Li Su and Shu-Kai Hsieh. 2008. Design and Prototype of a Large-scale and Fully Sense-tagged Corpus. 4938: 186-193. Springer-Verlag Berlin Heidelberg.
Ker Sue-Jin and Jen-Nan Chen. 2004. Adaptive Word Sense Tagging on Chinese Corpus. PACLIC 18, pp. 267–273. Dec. 8–10, 2004, Waseda University, Tokyo.
Kilgarriff, Adam, Chu-Ren Huang, Pavel Rychly, Simon Smith, and David Tugwell. 2005. Chinese Word Sketches. ASIALEX 2005: Words in Asian Cultural Context. June 1-3. Singapore.
Kipper, Karin, Anna Korhonen, Neville Ryant, Martha Palmer. 2008. A Large-scale Classification of English Verbs. Language Resources and Evaluation Journal. 42 (1): 21-40. Springer Netherlands.
Leacock, Claudia, George A. Miller, and Martin Chodorow. 1998. Using Corpus Statistics and WordNet Relations for Sense Identification. Computational Linguistics, 24(1): 147–65.
Lee, Hyun-Ah and Gil Chang Kim. 2002. Translation Selection through Source Word Sense Disambiguation and Target Word Selection. Proceedings of the 19th International. Conference on Computational Linguistics, Taipei, Taiwan.
Lee, Yoong-Keok, Hwee Tou Ng, and Tee-Kiah Chia. 2004. Supervised Word Sense Disambiguation with Support Vector Machines and Multiple Knowledge Sources. Proceedings of SENSEVAL-3: The third International Workshop on the Evaluating Systems for the Semantic Analysis of Text, Barcelona, Spain, pp. 137–140.
Li, Ping, Zhen Jin, and Li Hai Tan. 2004. Neural Representations of Nouns and Verbs in Chinese: An fMRI Study. Neuroimage, 21: 1533–1541.
Li, Ping. 1998. Crosslinguistic Variation and Sentence Processing: The Case of Chinese, in D. Hillert (ed.), Sentence processing: A Cross-linguistic Perspective, Academic Press, San Diego.
Li, Ping and Michael Yip. 1996. Lexical Ambiguity and Context Effects in Spoken Word Recognition: Evidence from Chinese, in G. Cottrell (ed.), Proceedings of the 18th Annual Meeting of the Cognitive Science Society, Lawrence Earlbaum Associates, Hillsdale, NJ, pp. 228-232.
Li, Ping and Michael Yip. 1998. Context Effects and Processing of Spoken Homophones, in C. K. Leong and K. Tamaoka (eds.), Reading and Writing: An Interdisciplinary Journal 10, 223-243.
Li, Yu-Hua, Zuhair A. Bandar, and David McLean. 2003. An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources. IEEE Transactions on Knowledge and Data Engineering, 15: 871–82.
Li, Wanyin, Qin Lu, and Ruifeng Xu. 2005. Similarity Based Chinese Synonym Collocation Extraction. Computational Linguistics and Chinese Language Processing. 10.1: 123–44.
Lien, Chinfa. 2000. A Frame-based Account of Lexical Polysemy in Taiwanese. Language and Linguistics. 1.1:119–138.
Lin, Charles and Kathleen Ahrens. 2000. Calculating the Number of Senses: Implications for Ambiguity Advantage Effect During Lexical Access. In H. Y Tai and Chang Y. L. (eds.) Proceedings of the Seventh International Symposium on Chinese Languages and Linguistics. Chai-yi: National Chung-Cheng University, pp. 141–155.
Lin, Dekang. 1998. Automatic Retrieval and Clustering of Similar Words. The 36th Annual Meeting of the Association for Computational Linguistics, pp. 768–74.
Liu, Qun and Su-Jian Li. 2002. The Word Similarity Calculation on <<HowNet>>. Proceedings of the 3rd Conference on Chinese lexicography, Taipei.
Martinez, David, Eneko Agirre, and Xinglong Wang. 2006. Word Relatives in Context for Word Sense Disambiguation. Proceedings of the 2006 Australasian Language Technology Workshop (ALTW2006), pp. 42–50.
Mason, Robert A. and Marcel Adam Just. 2007. Lexical ambiguity in sentence comprehension. Brain Research, 1146: 115–27.
McCarthy, Diana. 2009. Word Sense Disambiguation: An Overview. Language and Linguistics Compass. 3 (2): 537-558. Blackwell Published.
McRoy, Susan. 1992. Using multiple knowledge sources for word sense disambiguation. Computational Linguistics, 18(1): 1-30.
Mei, Jia-Ju, Yi-Ming Zhu, Yun-Qi Gao, and Hong-Xiang Yin. 1984. Tongyici Cilin. Shan ghai: Shang wu Press and Shang hai Dictionaries.
Miller, George A., R. Beckwith, Christiane Fellbaum, D. Gross, and K. Miller. 1993. Introduction to WordNet: An On-line Lexical Database. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence. Chamb&eacute;ry, France. 28, August–3, September.
Moldovan, Dan and Adrian Novischi. 2004. Word sense disambiguation of WordNet glosses. Computer Speech and Language, 18: 301–17.
Navigli, Roberto. 2009. Word Sense Disambiguation: A Survey. ACM Computing Surveys, 41(2), ACM Press, 2009, pp. 1-69.
Niles, Ian and Adam Pease. 2003. Linking Lexicons and Ontologies: Mapping WordNet to the Suggested Upper Merged Ontology. In Proceedings of the IEEE International Conference on Information and Knowledge Engineering. (IKE 2003), Las Vegas, Nevada.
Pedersen, Ted. 2000. A Simple Approach to Building Ensembles of Na&iuml;ve Bayesian Classifiers for Word Sense Disambiguation. Proceeding of the First Annual Meeting of the North American Chapter for Computational Linguistics, pp. 63–9.
Peng, Jin, Xu Sun, Yunfang Wu, and Shiwen Yu. 2007. Word Clustering for Collocation-Based Word Sense Disambiguation. The Eighth International Conference on Intelligent Text Processing and Computational Linguistics (CICLing 2007), LNCS 4394: 267–274.
Pitler, Emily, Annie Louis and Ani Nenkova. 2009. Automatic sense prediction for implicit discourse relations in text. Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNCLP of the AFNLP, 683-691. Suntec, Singapore, August 2009.
Pustejovsky, James and Branimir Boguraev. 1996. Lexical Semantics: The Problem of Polysemy.Oxfprd University Press.
Pustejovsky, James. 1995. The generative lexicon. Cambridge: MIT Press.
Rohsenow, John. 1978. Perfect –le: aspect and relative tense in Mandarin Chinese. Proceedings of symposium on Chinese linguistics, 1977 Linguistic Institute of Linguistic Society of America, ed. by Robert L. Cheng, Ying-che Li, and Ting-chi Tang, 267-291. Taipei: Student.
Pustejovsky, James. 1991. The Syntax of Event Structure. Lexical and Conceptual Semantics:A Cognition Special Issue, ed. by Levin and Pinker, 47-80.Cambridge: Blackwell.
Ravin, Yael, and Claudia Leacock. 2000. Polysemy: An overview. Polysemy: Theoretical and computational approaches, ed. by Yael Ravin and Claudia Leacock, 1-29. New York: Oxford University Press.
Resnik, Philip and David Yarowsky. 2000. Distinguishing Systems and Distinguishing Senses: New Evaluation Methods for Word Sense Disambiguation. Natural Language Engineering 5 (3): 113–33. Printed in the United Kingdom. Cambridge University Press.
Resnik, Philip. 1999. Semantic Similarity in a Taxonomy: an Information-based Measure and Its Application to Problems of Ambiguity in Natural Language. Artificial Intelligence Research, 11: 95–130.
Small, Steven L., Garrison W. Cottrell and Michael K. Tanehaus (Ed.). 1988. Lexical Ambiguity Resolution: Perspectives from Psycholinguistics, Neuropsychology and Artificial Intelligence. San Mateo, CA: Morgan Kaufmann.
Stevenson, Mark. 2003. Word sense disambiguation: the case for combinations of knowledge sources. Stanford, California: Center for the Study of Language and Information.

Steven J. Burton, Richard R. Sudweeks, Paul F. Merrill and Bud Wood. 1991. How to Prepare Better Multiple-Choice Test Items: Guidelines for University Faculty. Brigham Young University Testing Service and The Department of Instructional Science.
Tabossi, Patrizia and Francesco Zardon. 1993 Processing Ambiguous Words in Context. Journal of Memory and Language, 32: 359-372.
Van, Petten Cyma and Luka Barbara. 2006. Neural localization of semantic context effects in electromagnetic and hemodynamic studies. Brain and Language, 97: 279-293.
Veronis, Jean and Nancy M. Ide. 1990. Word sense disambiguation with very large neural networks extracted from machine readable dictionaries. Proceedings of the 13th Conference on Computational Linguistics, 389–94. August 20–25, 1990, Helsinki, Finland.
Xue, Nianwen Jinying Chen, and Martha Palmer. 2006. Aligning Features with Sense Distinction Dimensions. Proceedings of the COLING/ACL Main Conference Poster Sessions, 921–928. Sydney, July 2006.
Yarowsky David. 2000. Hierarchical Decision Lists for Word Sense Disambiguation. Computers and the Humanities. 34: 179–186.
Yarowsky, David. 1993. One Sense Per Collocation. Proceedings of the Workshop on Human Language Technology. Princeton, New Jersey, pp. 266–271.
Weinreich, Uriel. 1964. Webster’s Third: a critique of its semantics. International Journal of American Linguistics. 30: 405-409.
Wu, Hsiao-Ching. 2003. A case study on the grammaticalization of GUO in Mandarin Chinese—Polysemy of the motion verb with respect to semantic changes. Language and Linguistics. 4:857–885.
Zempleni, Monika-Zita, Remco Renken, John C.J. Hoeks, Johannes M. Hoogduin, and Laurie A. Stowe. 2007. Semantic ambiguity processing in sentence context: Evidence from event-related fMRI. Neuroimage, 34: 1270–79.
Zhang, Yuntao, Ling Gong, and Yongcheng Wang. 2005. Chinese Word Sense Disambiguation Using HowNet. L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, pp. 925–32.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44837-
dc.description.abstract在這個研究當中,我使用以語料庫為驅動的操作當作是詞義預測的主要方法。我著重藉由使用語料庫觀察個別的語義特徵以預測還沒有分析的詞彙的詞義,在本論文中,所使用的語料庫,如:中文十億詞語料庫 (Chinese Gigaword Corpus), 知網 (HowNet), 中文詞網 (Chinese Wordnet), and 現代漢語辭典 (XianDai HanYu CiDian)。使用這些語料庫,我可以藉由詞形比對和概念比對的分析來確定四個目標詞彙 --- 吃、玩、換、燒的共現詞彙群組。

這四個目標詞彙都是及物動詞,他們都有超過兩個以上的詞義。他們的共現詞彙對於這個詞義預測研究非常有用,也扮演著很重要的角色。當我進行詞形相似成群的分析時,我使用這些共現詞彙的相同詞素,是為了要將他們放入相同的群組。因此,在這個詞義預測的研究,以語料庫為主和計算機計算的方法裡,有兩個主要的策略,分別是:(1) 詞形相似成群的分析,和 (2) 概念相似成群的分析。又在(2)的分析當中,透過知網以探究 (a) 義原之間的相似,和 (b) 概念之間的相似。在這個詞義預測研究,我先預測不同群組詞彙可以表達不同的詞義,再透過以語料庫為主和計算機計算的方法的詞形相似成群分析和概念相似成群分析來檢測這四個目標詞彙的準確率。然後,我再透過中文詞網和現代漢語辭典來評估這四個目標詞彙,以證明我可以利用自動計算的程式來預測吃、玩、換、燒的不同詞義。
利用以語料庫為主和計算機的方法在這個詞義預測研究之後,我以紙筆的測驗來測試受試者的直覺知識以驗證不同群組的詞彙可以表達不同的詞義。因此,為了測驗這四個目標詞彙的相關共現詞彙,我使用了有多項選擇的任務(multiple-choice task, Burton et al. 1991)。此外,因為實驗的刺激語料收集是來自以語料庫為主和計算機計算的詞形相似成群的方法,所以我將靠著這些在詞義預測研究中所表現的結果來驗證本研究方法的可行性。
zh_TW
dc.description.abstractIn this study, I proposed using corpus-driven distribution as the main method of prediction. I concentrated on individual semantic features to predict the senses of non-defined words by using corpora and tools, such as Chinese Gigaword Corpus, HowNet, Chinese Wordnet, and XianDai HanYu CiDian (Xian Han). Using these corpora, I determined the collocation clusters of the four target words--- chi1 “eat”, wan2 “play”, huan4 “change” and shao1 “burn” through character similarities and concepts similarities.

The four target words are all transitive verbs and they each have more than two senses. The collocation words of the four target words are very useful and play an important role in this sense prediction study. When conducting the character similarity clustering analysis, I employed identical morphemes of some of the collocation words in order to cluster them into the same cluster. Therefore, there are two main strategies of the corpus-based and computational approach used in this sense prediction study: (1) character similarity clustering analysis; and (2) concept similarity clustering analysis, which encompasses via HowNet (a) similarity between sememes, and (b) similarity between concepts. In this sense prediction study, I first predicted that different clusters can represent different senses, and I examined the accuracy rates of the four target words via the character similarity clustering analysis and the concept similarity clustering analysis of the corpus-based and computational approach. Then, I evaluated the four target words via sense divisions in Chinese Wordnet and in Xiandai Hanyu Cidian and was able to employ automatically computational programming to predict different senses for chi “eat”, wan2 “play”, huan4 “change”, and shao1 “burn”.
After the corpus-based and computational approach used in this sense prediction study, I demonstrated that I was able to use off-line tasks to test my participants’ intuition, which supports the theory that different clusters can represent different senses when using the corpus-based and computational approach. Therefore, in order to examine the related collocation words for the lexically ambiguous target words, I employed a multiple-choice task (Burton et al. 1991). In addition, because the stimuli were collected from the character similarity clustering analysis of the corpus-based and computational approach, I demonstrated the viability of this approach by the results presented in this sense prediction study.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:56:07Z (GMT). No. of bitstreams: 1
ntu-99-D95142001-1.pdf: 1769127 bytes, checksum: 2657e71618a6429d4d653367f2731f57 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………………....i
誌謝………………………………………………………………………………...........ii
中文摘要…………………………………………………………………………..........iv
英文摘要…………………………………………………………………………..........vi
Table of Contents………………………………………………...................................viii
List of Figures………………………………………………......................................xiii
List of Formulas……………………………………………….....................................xiv
List of Illustration….……………………………………………...................................xv
List of Instruction.………………………………………………..................................xvi
List of Lists………………………………………………............................................xvii
List of Tables………………………………………………........................................xviii
Chapter 1 Introduction………………………………………………........................1
1.1 Fundamental Questions………………………………………………….........1
1.2 Corpus-based and Computational Resolution…………………………...........4
1.3 Experimental Evaluation Resolution...............................................................11
1.4 Overview of Dissertation……………………………………………………13
Chapter 2 Previous Researches on Lexical Ambiguity and Polysemy........................15
2.1 What are Lexical Ambiguity and Polysemy?……..……….………15
2.1.1 Lexical Ambiguity...........................................................................16
2.1.2 Polysemy.........................................................................................19
2.1.3 The Relationship between Lexical Ambiguity and Polysemy........23
2.2 Corpus-based and Computational Model........................................................25
2.2.1 Review of Previous Studies.............................................................25
2.2.2 Gap of Previous Studies..................................................................38
2.3 Hypotheses and Research Questions...............................................................40
Chapter 3 Lexical Knowledge Base and Corpus…………………………................43
3.1 Chinese Gigaword Corpus…………………...................................………....43
3.2 HowNet…………………………....................................................................47
3.3 Chinese Wordnet……………………….........................................................51
3.4 XianDai HanYu CiDian……..........…………………….................................56
3.5 Summary………..............................................................…………………....57
Chapter 4 Target Word Selection and Empirical Data Collection….....……………59
4.1 Module-Attribute Representation of Verbal Semantics…………………….60
4.2 Tests for the Four Target Words Selections……………………...........…….66
4.3 Empirical Data Collection………………………...........................................78
4.4 Summary………………………......................................................................95
Chapter 5 Corpus-based and Computational Analysis……………………….............97
5.1 Methodology...........................................................……………………….....97
5.2 Character Similarity Clustering Analysis…………………..........................100
5.3 Concept Similarity Clustering Analysis………………………....................134
5.3.1 Similarity between Sememes………………………………….137
5.3.2 Similarity between Concepts…………………………....……….138
5.4 Summary………………………………………………………………….149
Chapter 6 Evaluation in Chinese Wordnet and Xiandai Hanyu Cidian…………….151
6.1 Sense Prediction Based on Character Similarity Clustering Analys…...…152
6.2 Sense Prediction Based on Concept Similarity Clustering Analysis……..157
6.3 Analysis…………………………………………………………………….167
6.3.1 Similarity Clustering Analysis in CWN……………………...….167
6.3.2 Similarity Clustering Analysis in Xian Han………………….….178
6.3.3 Comparisons of the Four Target Words in CWN and in Xian Han…………………………………………...………………….182
6.4 Summary……………………………………………………………………184
Chapter 7 Experimental Evaluation…………………………...................................187
7.1 The chi1 “eat” Task…………………………………………………….......191
7.1.1 Participants……………………………………………………....191
7.1.2 Stimuli……………………………………………………...........191
7.1.3 Procedure…………………………………………………….......192
7.2 The wan2 “play” Task………………………………………………….....198
7.2.1 Participants………………………………………………………198
7.2.2 Stimuli…………………………………………………………...199
7.2.3 Procedure………………………………………………………...200

7.3 The huan4 “change” Task………………………………………………….204
7.3.1 Participants……………………………………………………....204
7.3.2 Stimuli…………………………………………………………...204
7.3.3 Procedure…………………………………………………….......205
7.4 The shao1 “burn” Task……………………………………………………..210
7.4.1 Participants………………………………………………………210
7.4.2 Stimuli…………………………………………………………...210
7.4.3 Procedure………………………………………………………...211
7.5 Analysis……………………………………………………………….........217
7.6 Summary…………………………………………………………………....225
Chapter 8 Comparison between Corpus-based and Computational with Experimental Determination……………....…………………........................................227
8.1 Corpus-based and Computational Identification……………………...……227
8.2 Experimental Determination…………………………………………...…..232
8.3 Comparison………………………………………………………………....234
8.4 Summary…………………………………………………………………...238
Chapter 9 Conclusion……….....................................................................................239
9.1 Summary and Discussion…………………………………………………..239
9.2 Contribution of This Work…………………………………………………244
9.3 Implication and Future Work………………………………………………248
References……………………………………………………………………….……253
Appendices………………………………………...………………………………….269
Appendix 1: For chi1 “eat” --- Partial clusters without the clustering number as the default target……………………………………………………………269
Appendix 2: For wan2 “play” --- Partial clusters without the clustering number as the default target……………………………………………………………270
Appendix 3: For huan4 “change” --- Partial clusters without the clustering number as the default target…………………...…………………………………...271
Appendix 4: For shao1 “burn” --- Partial clusters without the clustering number as the default target……………………………………………………………272
Appendix 5: Senses of chi1 “eat” in Chinese Wordnet……………………………….273
Appendix 6: Senses of wan2 “play” in Chinese Wordnet…………………………….280
Appendix 7: Senses of huan4 “change” in Chinese Wordnet...………………………282
Appendix 8: Senses of shao1 “burn” in Chinese Wordnet……………………………284
Appendix 9: Senses of chi1 “eat” in XianDai HanYu CiDian……...………………...288
Appendix 10: Senses of wan2 “play” in XianDai HanYu CiDian………………...….289
Appendix 11: Senses of huan4 “change” in XianDai HanYu CiDian…………..........290
Appendix 12: Senses of shao4 “burn” in XianDai HanYu CiDian……………….......291
Appendix 13: List 1 of the off-line multiple-choice task in chi1 “eat”……………….292
Appendix 14: List 2 of the off-line multiple-choice task in chi1 “eat”……………….302
Appendix 15: The off-line multiple choice task in chi1 “eat” by subject ....................310
Appendix 16: The off-line multiple choice task in chi1 “eat” by item ........................311
Appendix 17: List 1 of the off-line multiple-choice task in wan2 “play”.....................313
Appendix 18: List 2 of the off-line multiple-choice task in wan2 “play”.....................321
Appendix 19: The off-line multiple choice task in wan2 “play” by subject ................329
Appendix 20: The off-line multiple choice task in wan2 “play” by item ....................330
Appendix 21: List 1 of the off-line multiple-choice task in huan4 “change”...............332
Appendix 22: List 2 of the off-line multiple-choice task in huan4 “change”...............340
Appendix 23: The off-line multiple choice task in huan4 “change” by subject ..........348
Appendix 24: The off-line multiple choice task in huan4 “change” by item ...............349
Appendix 25: List 1 of the off-line multiple-choice task in shao1 “burn”....................351
Appendix 26: List 2 of the off-line multiple-choice task in shao1 “burn”....................359
Appendix 27: The off-line multiple choice task in shao1 “burn” by subject................367
Appendix 28: The off-line multiple choice task in shao1 “burn” by item....................368
Appendix 29: Yao4 “medicine” cluster by item in chi1 “eat” task...............................370
Appendix 30: Fan4 “rice” cluster by item in chi1 “eat” task........................................371
Appendix 31: Can1 “meal” cluster by item in chi1 “eat” task......................................372
Appendix 32: Rou4 “meat” cluster by item in chi1 “eat” task......................................373
Appendix 33: Qiu2 “ball” cluster by item in wan2 “play” task....................................374
Appendix 34: Pai2 “playing card” cluster by item in wan2 “play” task.......................375
Appendix 35: Qiang1 “gun” cluster by item in wan2 “play” task................................376
Appendix 36: Che1 “car” cluster by item in wan2 “play” task.....................................377
Appendix 37: Che1 “car” cluster by item in huan4 “change” task...............................378
Appendix 38: Ka3 “card” cluster by item in huan4 “change” task...............................379
Appendix 39: Gu3 “share” cluster by item in huan4 “change” task.............................380
Appendix 40: Zheng4 “certificate” cluster by item in huan4 “change” task................381
Appendix 41: Rou4 “meat” cluster by item in shao1 “burn” task.................................382
Appendix 42: Cai4 “vegetable” cluster by item in shao1 “burn” task..........................383
Appendix 43: Cao3 “grass” cluster by item in shao1 “burn” task................................384
Appendix 44: Che1 “car” cluster by item in shao1 “burn” task....................................385
dc.language.isoen
dc.title詞義預測研究:以語料庫驅動的語言學研究方法zh_TW
dc.titleCorpus-driven Linguistic Approaches to Sense Predictionen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.advisor-orcid,安可思(kathleenahrens@yahoo.com)
dc.contributor.oralexamcommittee蘇以文(Lily I-Wen Su),張顯達(Hin-Tat Cheung),柯淑津(Sue-Jin Ker),謝舒凱(Shu-Kai Hsieh)
dc.subject.keyword詞彙歧異,詞義預測,語料庫為主的方法,詞形相似成群的方法,概念相似成群的方法,實驗性的評估,zh_TW
dc.subject.keywordLexical ambiguity,sense prediction,corpus-based approach,character similarity clustering approach,concept similarity clustering approach,experimental Evaluation,en
dc.relation.page386
dc.rights.note有償授權
dc.date.accepted2010-06-23
dc.contributor.author-college文學院zh_TW
dc.contributor.author-dept語言學研究所zh_TW
顯示於系所單位:語言學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved