Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44827
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇
dc.contributor.authorTien-Wei Chiangen
dc.contributor.author江典蔚zh_TW
dc.date.accessioned2021-06-15T03:55:52Z-
dc.date.available2013-06-30
dc.date.copyright2010-06-30
dc.date.issued2010
dc.date.submitted2010-06-24
dc.identifier.citation[1].M. Yamanouchi, J. Ieda, F. Matsukura, S. E. Barnes, S. Maekawa, and H. Ohno, Science 317, 1726 (2007).
[2].S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi, and P. Le Doussal, Phys. Rev. Lett. 80, 849 (1998).
[3].M. Jost, J. Heimel, and T. Kleinefeld, Phys. Rev. B 57, 5316 (1998).
[4].P. J. Metaxas, J. P. Jamet, A. Mougin, M. Cormier, J. Ferre, V. Baltz, B. Rodmacq, B. Dieny, and R. L. Stamps, Phys. Rev. Lett. 99, 217208 (2007).
[5].W. Kleemann, J. Rhensius, O. Petracic, J. Ferré, J. P. Jamet, and H. Bernas, Phys. Rev. Lett. 99, 097203 (2007).
[6].Dourlat, V. Jeudy, A. Lemaître, and C. Gourdon, Phys. Rev. B 78, 161303(R) (2008).
[7].Y. G. Yoo, M. Kläui, C. A. F. Vaz, L. J. Heyderman, and J. A. C. Bland, Appl. Phys. Lett. 82, 2470 (2003).
[8].R. P. Cowburn, D. A. Allwood, G. Xiong, and M. D. Cooke, J. Appl. Phys. 91, 6949 (2002).
[9].D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, and R.P. Cowburn, Science 309, 1688 (2005).
[10].Stuart S. P. Parkin, Masamitsu Hayashi, and Luc Thomas, Science 320, 190 (2008).
[11].N. L. Schryer and L.R. Walker, J. Appl. Phys. 45, 5406 (1974).
[12].Andrew Kunz and Sarah C. Reiff, Appl. Phys. Lett. 93, 082503 (2008).
[13].D.G Porter and M. J. Donahue, J. Appl. Phys. 95,6729 (2004).
[14].M. Hayashi, L. Thomas, C. Rettner, R. Moriya, and S. S. Parkin, Nat.Phys.3, 21 (2007).
[15].Jun-Young Lee, Ki-Suk Lee, and Sang-Koog Kim, Appl. Phys. Lett. 91, 122513 (2007).
[16].F. Cayssol, J. L. Menéndez, D. Ravelosona, C. Chappert, J.-P. Jamet, J. Ferré, and H. Bernas, Appl. Phys. Lett. 86, 022503 (2005).
[17].E. Martinez, L. Lopez-Diaz, L. Torres, C. Tristan, and O. Alejos, Phys. Rev B 75,174409 (2007).
[18].D. Atkinson, D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, and R. P. Cowburn, Nature Mater. 2, 85 (2003).
[19].F. Cayssol, D. Ravelosona, C. Chappert, J. Ferre, and J. P. Jamet, Phys. Rev Lett. 92, 107202 (2004).
[20].T. Ono, H. Miyajima, K. Shigeto, K. Mibu, N. Hosoito, and T. Shinjo, Science 284, 468 (1999).
[21].J. Gadbois and J. –G. Zhu, IEEE Trans. Magn. 31, 3802 (1995).
[22].Yoshinobu Nakatani, André Thiaville, and Jacques Miltat, Nature Materials 2, 521 (2003).
[23].M. T. Bryan, D. Atkinson, and R. P. Cowburn, Appl. Phys. Lett. 85, 3510 (2004)
[24].S. A. Wolf et al., Science 294, 1488 (2001).
[25].R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T.Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science 282, 85 (1998).
[26].S. K. Upadhyay, A. Palanisami, R. N. Louie, and R. A. Buhrman, Phys. Rev. Lett. 81, 3247 (1998).
[27].G. J. Strijkers, Y. Ji, F. Y. Yang, C. L. Chien, and J. M. Byers, Phys. Rev. B 63, 104510 (2001).
[28].M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. Lett. 74, 1657 (1995).
[29].B. Nadgorny, R. J. Soulen, Jr., M. S. Osofsky, I. I. Mazin, G. Laprade, R. J. M. van de Veerdonk, A. A. Smits, S. F. Cheng, E. F. Skelton, and S. B. Qadri, Phys. Rev. B 61, R3788 (2000).
[30].C. H. Kant, O. Kurnosikov, A. T. Filip, P. LeClair, H. J. M. Swagten, and W. J. M.de Jonge, Phys. Rev. B 66, 212403 (2002).
[31].R. Panguluri, G. Tsoi, B. Nadgorny, S. H. Chun, N. Samarth, and I. I. Mazin, Phys. Rev. B 68, 201307(R) (2003).
[32].R. Panguluri, B. Nadgorny, T. Wojtowicz, W. L. Lim, X. Liu, and J. K. Furdyna, Appl. Phys. Lett. 84, 4947 (2004).
[33].T. W. Chiang, Y. H. Chiu, S. Y. Huang, S. F. Lee, J. J. Liang, H. Jaffrès,J. M. George, and A. Lemaitre, J. Appl. Phys. 105, 07C507 (2009).
[34].F. Pérez-Willard, J. C. Cuevas, C. Sürgers, P. Pfundstein, J. Kopu, M. Eschrig, and H. v. Löhneysen, Phys. Rev. B 69, 140502(R) (2004).
[35].I. I. Mazin, A. A. Golubov, and B. Nadgorny, J. Appl. Phys. 89, 7576 (2001).
[36].G. T. Woods, R. J. Soulen, Jr., I. I. Mazin, B. Nadgorny, M. S. Osofsky, J. Sanders, H. Srikanth, W. F. Egelhoff, and R. Datla, Phys. Rev. B 70, 054416 (2004).
[37].N. Auth et al, Phys. Rev. B 68, 024403 (2003).
[38].Igor Žutić and Oriol T. Valls, Phys. Rev. B 61, 1555 (1999).
[39].Y. Bugoslavsky, Y. Miyoshi, S. K. Clowes, W. R. Branford, M. Lake, I. Brown, A. D. Caplin, and L. F. Cohen, Phys. Rev. B 71, 104523 (2005).
[40].V. Baltz, A. D. Naylor, K. M. Seemann, W. Elder, S. Sheen, K. Westerholt, H. Zabel, G. Burnell, C. H. Marrows and B. J. Hickey, J. Phys.: Condens. Matter 21, 095701 (2009).
[41].A. Geresdi, A. Halbritter, M. Csontos, Sz. Csonka, G. Mihály, T. Wojtowicz, X. Liu, B. Jankó, and J. K. Furdyna, Phys. Rev. B 77, 233304 (2008).
[42].A. Kastalsky, A. W. Kleinsasser, L. H. Greene, R. Bhat, F. P.Milliken, and J. P. Harbison, Phys. Rev. Lett. 67, 3026 (1991).
[43].C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[44].P. Weiss, La variation du ferromagnetisme du temperature, Comptes Rendus, 143, p.1136-1149 (1906).
[45].H. J. Williams, R, M. Bozorth and W. Shockley, Phys. Rev. 74, 155 (1949).
[46].C.D. Graham, Jr.,” Physics of ferromagnetism (2 nd)”, 1997.
[47].A. Thiaville, J. M. Garcia, and J. Milat, J. Magn. Magn. Mater. 242, 1061 (2002).
[48].L. D. Landau, E. M. Lifshitz, Phys. Z. Sowietunion 8, 153(1935).
[49].W. Doring: Z. Naturforsch. 3a, 373-379 (1948).
[50].T. L. Gilbert: Formulation, foundations and applications of the phenomenological theory of ferromagnetism, Ph.D. thesis, Illinois Institute of Technology, Chicago (1956)
[51].T. L. Gilbert: Project A059, Supplementary Report, Technical report, Armour Research Foundation (1956).
[52].W. F. Brown, Jr.: Micromagnetics (Wiley Interscience, New York 1963).
[53].A.F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [A.F. Andreev, Sov. Phys. JETP 19, 1228 (1964)].
[54].G. E. Blonder, M. Tinkham, T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
[55].J. Rothman, M. Kläui, L. Lopez-Diaz, C. A. F. Vaz, A. Bleloch, J. A. C. Bland, Z. Cui, and R. Speaks, Phys. Rev. Lett. 86, 1098 (2001).
[56].S. K. Dew, J. Appl. Phys. 76, 4857 (1994).
[57].呂登復, “實用真空技術”, 國興出版社, 第一章, 12頁.
[58].T. Uhlig and J. Zweck, Phys. Rev. Lett. 93, 047203 (2004).
[59].M. Kläui, C. A. F. Vaz, L. J. Heyderman, U. Rüdiger, and J. A. C. Bland, J. Magn. Magn. Mater, 290, 61 (2005).
[60].I. Neudecker, M. Kläui, K. Perzlmaier, D. Backes, L. J. Heyderman, C. A. F. Vaz, J. A. C. Bland, U. Rüdiger, and C. H. Back, Phys. Rev. Lett. 96, 057207 (2006).
[61].M. Eltschka, M. Kläui, U. Rüdiger, T. Kasama, L. Cervera-Gontard, R. E. Dunin-Borkowski, F. Luo, L. J. Heyderman, C.-J. Jia, L.-D. Sun, and C.-H. Yan, Appl. Phys. Lett. 92, 222508 (2008).
[62].J. G. Zhu, Y. Zheng, and G. A. Prinz, J. Appl. Phys. 87, 6668 (2000).
[63].F. Q. Zhu, G. W. Chern, O. Tchernyshyov, X. C. Zhu, J. G. Zhu, and C. L. Chien, Phys. Rev. Lett. 96, 027205 (2006).
[64].F. J. Castaño, D. Morecroft, W. Jung, and C. A. Ross, Phys. Rev. Lett. 95, 137201 (2005).
[65].F. J. Castaño, C. A. Ross, and A. Eilez, J. Phys. D 36, 2031 (2003).
[66].T. Kimura, Y. Otani, and J. Hamrle, Appl. Phys. Lett. 87, 172506 (2005).
[67].Masahiro Hara, Junya Shibata, Takashi Kimura, and Yoshichika Otani, Appl. Phys. Lett. 88, 082501(2006).
[68].T. J. Hayward, J. Llandro, R. B. Balsod, J. A. C. Bland, F. J. Castaño, D. Morecroft, and C. A. Ross, Appl. Phys. Lett. 89, 112510 (2006).
[69].W. Jung, F. J. Castaño, and C. A. Ross, Phys. Rev. Lett. 97, 247209 (2006).
[70].D. C. Chen, Y. D. Yao, J. K. Wu, C. Yu, and S. F. Lee, J. Appl. Phys. 103, 07F312 (2008).
[71].W. Jung, F. J. Castaño, and C. A. Ross, Appl. Phys. Lett. 91, 152508 (2007).
[72].T. Miyawaki, K. Toyoda, M. Kohda, A. Fujita, and J. Nitta, Appl. Phys. Lett. 89, 122508 (2005).
[73].L. J. Chang, C. Yu, T. W. Chiang, K. W. Cheng, W. T. Chiu, S. F. Lee, Y. Liou, and Y. D. Yao, J. Appl. Phys. 103, 07C514 (2008).
[74].A three-dimensional code to calculate the magnetization configuration and its field evolution is described on http://math.nist.gov/oommf.
[75].D. Morecroft, F. J. Castaño, W. Jung, J. Feuchtwanger, and C. A. Ross, Appl. Phys. Lett, 88, 172508 (2006).
[76].J-E. Wegrowe, D. Kelly, A. Franck, S. E. Gilbert, and J.-Ph. Ansermet, Phys. Rev. Lett. 82, 3681 (1999).
[77].Hayward, T. J., T. A. Moore, D. H. Y. Tse, J. A. C. Bland, F. J. Castano, and C. A. Ross, Physical Review B 72 184430 (2005).
[78].C. Nam, B. G. Ng, F. J. Castano, M. D. Mascaro, and C. A. Ross, Appl. Phys. Lett. 94, 082501 (2009).
[79].A. V. Khvalkovskiy, K. A. Zvezdin, Ya. V. Gorbunov, V. Cros, J. Grollier, A. Fert, and A. K. Zvezdin, Rhys. Rev. Lett.102, 067206 (2009).
[80].F. Bloch, Z. Phys. 74, 295, (1932).
[81].J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
[82].L. Berger, Phys. Rev. B 54, 9353 (1996).
[83].K. Inomata, IEICE Trans. Electron. E84-C, 740 (2001).
[84].Y. Jiang, T. Nozaki, S. Abe, T. Ochiai, A. Hirohata, N. Tezuka, and K. Inomata, Nature Materials 3, 36 (2004).
[85].Jan Manschot, Arne Brataas, and Gerrit E. W. Bauer, Appl. Phys. Lett. 85, 3250 (2004).
[86].Randall Law, Ei-Leen Tan, Rachid Sbiaa, Thomas Liew, and Tow Chong Chong, Appl. Phys. Lett. 94, 062516 (2009).
[87].K. Yagami, A. A. Tulapurkar, A. Fukushima, and Y. Suzuki, Appl. Phys. Lett. 85, 5634 (2004).
[88].Yiming Huai, Mahendra Pakala, Zhitao Diao, and Yunfei Ding, Appl. Phys. Lett. 87, 222510 (2004).
[89].L. Berger, J. Appl. Phys. 71, 2721 (1992).
[90].P. Vavassori, V. Metlushko, and B. Ilic, Appl. Phys. Lett. 91, 093114 (2007).
[91].N. Ohshima, H. Numata, T. Suzuki, S. Fukami, K. Nagahara, and N. Ishiwata, J. Appl. Phys. 103, 07D914 (2008).
[92].S. Dubois, L. Piraux, J. M. George, K. Ounadjela , J. L. Duvail and A. Fert, Phys. Rev. B 60, 477 (1999).
[93].Branislav Nikolic´ and Philip B. Allen, Rev. B 60, 3963 (1999).
[94].A. Pleceník, M. Grajcar, Š. Beňačka, P. Seidel and A. Pfuch, Phys. Rev. B 49, 10016 (1994).
[95].P. Chalsani, S. K. Upadhyay, O. Ozatay, and R. A. Buhrman, Phys. Rev. B 75, 094417 (2007).
[96].L. Thevenard, L. Largeau, O. Mauguin, G. Patriarche, A. Lemaître, N. Vernier, and J. Ferré, Phys. Rev. B 73, 195331 (2006).
[97].M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Rhys. Rev. Lett.61, 2472 (1988).
[98].G.. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44827-
dc.description.abstract在微觀的磁學研究裡,磁性料在侷限的幾何形狀下的磁化翻轉行為以及本身的自旋極化率,不但是很重要的課題,對於下一世代磁性元件的應用也提供新穎的方向,所以我們的實驗就針對這兩個主題做研究。
首先,以自旋閥的結構做磁化翻轉的研究,不但探討其幾何形狀上的影響,也對磁壁(domain wall)的動態變化做時域上的研究。
在NiFe/Cu/NiFe橢圓環自旋閥結構中,磁區翻轉行為隨著樣品尺寸變化,呈現一階段翻轉或兩階段翻轉,經由量測不同橢圓環長短軸比例與線寬的樣品,我們得到具有物理行為的相圖,而其結果和物理機制與理論模擬吻合。
我們也針對邊的粗糙度對次微米自旋閥線做研究,有系統地在線上製造不同大小與不同週期間距的突出物。當粗糙度小於某尺度時(對NiFe而言約 30nm為界線,對CoFeB而言約40nm是界線),磁壁在400nm線寬上的運動速度不會受到此粗糙度影響,而粗糙度大於此界線時,磁壁的運動速度會因此粗糙度所侷限而變慢。由於自旋電流引入之力矩也可導致磁化反轉, 所以我們也探討臨界電流在此結構下的影響,發現具有粗糙度的次微米自旋閥線可藉由一個外加橫向磁場,降低臨界電流密度,而我們的結果可歸因於在空間上局部磁化所造成。
在第二的主題裡,以點接觸安德烈夫反射(Point Contact Andreev Reflection)的方法量測不同磁性材料的自旋極化率,如同大部分的文獻,我們得到較寬的電導對電壓能譜圖,此行為是無法用MBTK模型解釋,但經由引入一個外加電阻項以及等效溫度於MBTK模型中,可成功解釋此現象並得到自旋極化率。另外我們考慮各方向入射角的入射電子貢獻,建立一個三維的BTK模型來解釋一些傳統BTK模型無法描述的特殊能普,這是由於入射電流在某些條件下會衰減,造成電子會在金屬與超導介面上堆積。新的模型很成功的可以擬合我們的量測數據。
zh_TW
dc.description.abstractThe behavior of magnetization reversal in confined geometry and the degree of spin polarization of magnetic materials are fundamental questions in magnetism and important for a wide range of magnetoresistive device application. Therefore we investigate these two topics experimentally.
First, we studied the behavior of magnetization reversal on pseudo spin valve sub micron structures. The research includes not only geometric shape effect but also dynamic measurements.
We studied nanoscale elliptical ring shaped NiFe/Cu/NiFe trilayer pseudo spin valve structures. The magnetization reversal processes showed simultaneous-reversal single-step transition or double-step transition involving flux closure states. For various aspect ratios (short axis to long axis) and line widths, transition between single-step and double-step magnetization reversals was measured to form a phase diagram. Simulations of the magnetization reversal behavior agreed qualitatively with our results.
We also studied edge roughness effect on the magnetization reversal of spin valve submicron wires. We prepared wires designed with periodic 'spikes' as artificial roughness. The height and the pitch of the spikes were varied systematically. No obvious dependence was found between the roughness and the domain wall velocity when the spikes were smaller than a threshold of 30 nm for NiFe (the widths were fixed at 400 nm), 40nm for CoFeB. The average velocity was slowed down when the height of the spikes were larger than the threshold. We also studied the current-induced magnetization switching. In-plane transverse magnetic fields help to reduce the critical current density for current induced domain-wall motion. Our results could be attributed to the space modulation of the local magnetization.
In the second topic, the point-contact Andreev reflection technique is employed to determine spin polarization of transport electrons or holes of various ferromagnetic materials. The observed conductance versus voltage spectra exhibited behaviors which were described by the Modified Blonder-Tinkham-Klapwijk (MBTK) model but with significant broadening. We propose a model by introducing a spreading resistance and compare with an existing model which included effective temperature as a parameter. We also established the new three-dimension BTK model to fit some anomalous data. The model considered three-dimension contact and incident current from all angles. The incident current from the ferromagnet was restricted under some conditions which made it decay. The electron would accumulate at the ferromaget/superconductor interface. Not only ideal data but also anomalous spectra are fitted well in this model.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:55:52Z (GMT). No. of bitstreams: 1
ntu-99-D94222012-1.pdf: 17697325 bytes, checksum: 1f8bdbfef50757a324d7a70c8cf3ff92 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAcknowledgement (in Chinese) ii
Publication List iii
Abstract (in Chinese) iv
Abstract (in English) v
Contents vii
List of Figures x
List of Tables xiv

1 Introduction 1

2 TheoreticalBackground 9
2.1 Domain wall motion 9
2.1.1 Magnetostatic energy energies 10
2.1.2 Domain wall structure 13
2.1.3 Landau–Lifshitz–Gilbert equation 15
2.1.4 Steady-state motion of domain 18
2.2 Point contact Andreev reflection 20
2.1.1 Andreev reflection 21
2.1.2 Blonder-Tinkham-Klapwijk theory 22
2.1.3 Modified Blonder-Tinkham-Klapwijk theory 26

3 Measurement techniques and simulation 29
3.1 Sample fabrication 29
3.2 MR and current driven magnetization reversal measurement setup 30
3.3 Time domain measurement 31
3.4 Point contact Andreev reflection measurements 33
3.4.1 Fabrication of superconducting tip and differential screw mechanism 34
3.4.2 Conductance measurements and analysis 35
3.5 Simulation methods 38

4 Variation of magnetization reversal in spin valve elliptical rings 39
4.1 Sample fabrication 40
4.2 Measurement and numerical simulations 41
4.3 Summary 53

5 Edge roughness effect on the magnetization reversal process of spin valve submicron wires 55
5.1 Sample fabrication 55
5.2 Measurement and numerical simulation results 60
5.2.1 MR loop 60
5.2.2 Time domain measurement 65
5.2.3 Simulation 69
5.3 The current-induced magnetization switching 70
5.3.1 Current driven magnetization switching on NiFe and Co20Fe60B20 spin valve wires 71
5.3.2 Current driven magnetization switching on NiFe spin valve wire with rough edge 73
5.4 Summary 74

6 Measuring the spin polarization of ferromagnetic materials and GaMnAs with Point Contact Andreev Reflection 77
6.1 Conductance measurements and analysis 77
6.1.1 Point contact spectra of Cu, Au, Fe, and CoFeB 78
6.1.2 Point contact spectra of permalloy 83
6.1.3 Temperatue dependence of resistance and magnetization hysteresis loop of Ga0.94Mn0.06As 89
6.1.4 Point contact spectra of Ga0.94Mn0.06As 92
6.2 Anomalously point contact spectra 96
6.3 Three dimension BTK model 99
6.3.1 The comparison between MBTK and our models 119
6.4 Summary 124

7 Conclusion 125

References 129

Appendix1 Simulate the magnetization configurations of trilayer spin valve wires with different spikes 136
Appendix2 The PCAR spectra of NiFe at 4.2K 138
Appendix3 The PCAR spectra of GaMnAs at 4.2K 151
dc.language.isoen
dc.subject粗糙度zh_TW
dc.subject點接觸安德烈夫反射zh_TW
dc.subject自旋閥zh_TW
dc.subject自旋極化率zh_TW
dc.subject磁壁zh_TW
dc.subjectspin valveen
dc.subjectBTKen
dc.subjectPoint Contact Andreev Reflectionen
dc.subjectspin polarizationen
dc.subjectroughnessen
dc.subjectdomain wallen
dc.titleNiFe與CoFeB自旋閥之磁化翻轉行為研究與自旋極化率測量zh_TW
dc.titleBehavior of NiFe and CoFeB magnetization reversal in submicron linewidth pseudo spin valve structures and measurements on the degree of spin polarization of transport electronsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.coadvisor李尚凡
dc.contributor.oralexamcommittee林昭吟,許仁華,林敏聰,張慶瑞
dc.subject.keyword自旋閥,磁壁,粗糙度,自旋極化率,點接觸安德烈夫反射,zh_TW
dc.subject.keywordspin valve,domain wall,roughness,spin polarization,Point Contact Andreev Reflection,BTK,en
dc.relation.page171
dc.rights.note有償授權
dc.date.accepted2010-06-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
17.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved