Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44818
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳希立(Shi-Li Chen)
dc.contributor.authorHung-Ting Suen
dc.contributor.author蘇宏庭zh_TW
dc.date.accessioned2021-06-15T03:55:38Z-
dc.date.available2011-07-12
dc.date.copyright2010-07-12
dc.date.issued2010
dc.date.submitted2010-06-24
dc.identifier.citation[1]陳仁德譯,太陽能電力公司:新能源新就業機會,新自然主義,2005,15-20。
[2]賴鵬程,太陽能系統分析與設計,全華科技圖書股份有限公司,1982。
[3]經濟部能源局,奈米節能技術研究四年計畫(第三年度),2005。
[4]李雯雯,王孟傑,薄膜太陽能電池技術發展淺力分析,第一章,2007。
[5]B. O’Regan, M. Grätzel, “A low-cost high efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353 (1991) 737-740.
[6]蔡松雨,染料敏化太陽能電池之研究,工研院太陽光電研究中心 下世代太陽能電池研究組,2008。
[7]Feifei Gao, Yuan Wang, Dong Shi, Jing Zhang, Mingkui Wang, Xiaoyan Jing, Robin Humphry-Baker, Peng Wang, Shaik M. Zakeeruddin and M. Grätzel, “Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells”, J. Am. Chem. Soc., 130 (32) (2008) 10720–10728.
[8]Seigo Ito, Hidetoshi Miura, Satoshi Uchida, Masakazu Takata, Koichi Sumioka, Paul Liska, Pascal Comte, Peter Péchy and Michael Grätzel, “High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye”, Chem. Commun., (2008) 5194–5196.
[9]Yamaguchi T, Tobe N, Matsumoto D, Arakawa H., “Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO(2) photoelectrodes”, Chem Commun (Camb). 45 (2007) 4767-4769.
[10]Yasuo Chiba, Ashraful Islam, Yuki Watanabe, Ryoichi Komiya, Naoki Koide and Liyuan Han, “Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%”, Jpn. J. Appl. Phys. 45 (2006) 638-640.
[11]Liyuan Han, Naoki Koide, Yasuo Chiba, Ashraful Islam, Ryoichi Komiya, Nobuhiro Fuke, Atsushi Fukui, and Ryohsuke Yamanaka, “Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance”, Appl. Phys. Lett. 86 (2005) 213501-213503.
[12]蔡忠憲,以二氧化鈦奈米管為前驅物製作染料敏化太陽能電池之陽極電極,國立成功大學化學工程學研究所,碩士論文,2003。
[13]張原睿,以電泳沈積法製作可撓曲染料敏化太陽能電池,國立台灣大學化學工程學研究所,碩士論文,2007。
[14]呂怡萱,二氧化鈦奈米管於染料敏化太陽能電池之探討,國立中央大學化學研究所,碩士論文,2005。
[15]陳家原,釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用,國立中央大學化學研究所,博士論文,2009。
[16]C.-J. Lin, W.-Y. Yu and S.-H. Chien, Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells, J. Mater. Chem., 20 (2010) 1073-1077.
[17]S. Karuppuchamy, K. Nomomura, T. Yoshida, T. Sugiura, H. Minoura, “Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells”, Solid States Ionics 151 (2002) 19-27.
[18]K. Kamada, M. Mukai, Y. Matsumoto, “Electrodeposition of titanium(IV) oxide film from sacrificial titanium anode in I2-added acetone bath”, Electrochim. Acta 47 (2002) 3309-3313.
[19]Masayuki Okuya, Koji Nokade, Daisuke Osa, Takafumi Nakano, G. R. Asoka Kumara and Shoji Kaneko, “Fabrication of dye-sensitized solar cells by spray pyrolysis deposition (SPD) technique”, J. of Photochem. and Photobiology A: Chemistry 164 (2004) 167-172.
[20]M. Izaki, T. Omi, “Transparent zinc oxide films prepared by electrochemical reaction”, Appl. Phys. Lett. 68 (1996) 2439-2440.
[21]Yanqin Wang, Yanzhong, Huang Cheng, Jiming Ma, Bin Xu, Weihua Li and Shengmin Cai, “The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode”, J. of Mater. Sci. 34 (1999) 2773-2779.
[22]Z.-S. Wang, C.-H. Huang, Y.-Y. Huang, Y.-J. Hou, P.-H. Xie, B.-W. Zhang, and H.-M. Cheng, “A Highly Efficient Solar Cell Made from a Dye-Modified ZnO-Covered TiO2 Nanoporous Electrode”, Chem. Mater. 13 (2001) 678-682.
[23]E. Fortunato, D. Ginley, H. Hosono, D. C. Paine, Transparent Conducting Oxides for Photovoltaics, MRS Bulletin, 32 (2007) 242-247.
[24]C. Pérez León, L. Kador, B. Peng and M. Thelakkat, Characterization of the Adsorption of Ru-bpy Dyes on Mesoporous TiO2 Films with UV−Vis, Raman, and FTIR Spectroscopies, J. Phys. Chem. B, 110 (2006) 8723–8730.
[25]荒川裕則,色素增感太陽能電池的最新技術Ⅱ,東京都千代田區內神田:株式會社,2007,P29。
[26]劉茂煌,工業材料雜誌,2003。
[27]M. K. Nazeeruddin, A. Kay, L. Rodicio, R. Humpbrybaker, E.Miller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 1993 115 6382.
[28]K. Mohammad, P. Nazeeruddin, R. Thierry, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Gratzel, J. Am.. Chem. Soc. 2001, 123, 163.
[29]M. Grätzel, “Photoelectrochemical cells”, Nature. 414 (2001) 338-344.
[30]Khwanchit Wongchareea, Vissanu Meeyoo, Sumaeth Chavade, 'Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers,' Solar Energy Materials & Solar Cells, 91 (2007) 566–571.
[31]Thomas Frank, Marlies Janßen, Michael Netzel, Gabriele Straß, Adolf Kler, Erwin Kriesl and Irmgard Bitsch,“Pharmacokinetics of Anthocyanidin-3-Glycosides Following Consumption of Hibiscus sabdariffa L. Extract”, J. Clin. Pharmacol. 45 (2005) 203-210.
[32]N. Terahara, N. Saito, T. Honda, K. Tokis, Y. Osajima, “Acylated anthocyanins of Clitoria ternatea flowers and their acyl moieties”, Phytochemistry, 29 (1990) 949-953.
[33]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II)charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes”, J. Am. Chem. Soc.,115 (1993) 6382-6390.
[34]E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, “Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers”, J. Am. Chem. Soc., 125 (2003) 475-482.
[35]M. Matsumura, S. Matsudaira, and H. Tsubomura, 'Dye sensitization and surface structures of semiconductor electrodes', Ind. Eng. Chem. Prod. Res. Dev., 19 (1980) 415-421.
[36]R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, and M. Tachiya, 'Efficiencies of electron injection from excited N3 dyeinto nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films', J. Phys. Chem. B, vol. 108 (2004) 4818-4822.
[37]K. Srikanth, Md. M. Rahman, H. Tanaka, K.M. Krishna, T. Soga, M. K. Mishra, T. Jimbo, M. Umeno, “Investigation of the effect of sol processing parameters on the photoelectrical properties of dye-sensitized TiO2 solar cells”, Sol. Cells, 65 (2001) 171-177.
[38]X. T. Zhang, I. Sutanto, T. Taguchi, Q. B. Meng, T. N. Rao, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami, “Al2O3-coated nanoporous TiO2 electrode for solid-state dye-sensitized solar cell”, Sol. Ener. Mater. Sol. Cells, vol. 80 (2003) 315–326.
[39]A.Turkovic, Z. Crnjak Orel, “dye-sensitized solar cell with CeO2 and mixed CeO2/SnO2 photoanodes”, Sol. Ener. Mater. Sol. Cells, 45 (1997) 275-281.
[40]Shengli Lu, Robert Koeppe, Serap Günes and Niyazi Serdar Sariciftci, “Quasi-solid-state dye-sensitized solar cells with cyanoacrylate as electrolyte matrix”, Sol. Ener. Mater. Sol. Cells, vol. 91, (2007) 1081–1086.
[41]K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu, “Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition”, Jpn. J. Appl. Phys, 36 (1997) L1453.
[42]K.-E. Kim, S.-R. Jang, J. Park, R. Vittala, K.-J. Kim, “Enhancement in the performance of dye-sensitized solar cells containing ZnO-covered TiO2 electrodes prepared by thermal chemical vapor deposition”, Sol. Ener. Mater. Sol. Cells, 91 (2007) 366–370.
[43]M. Okuya, K. Nakade, and S. Kaneko, ”Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, (2002) 425-435.
[44]M. Krunks, and E. Mellikov, 'Zinc oxide thin filmsby the spray pyrolysis method', Thin Solid Films, 270 (1995) 33-36.
[45]L.D. Kadam, and P.S. Patil, 'Studies on electrochromic properties of nickel oxide thin lms prepared by spray pyrolysis technique', Solar Energy Materials and Solar Cells, 69 (2001) 361-369.
[46]J. M. Ortega, A. I. Martinez, D. R. Acosta, and C. R. Magana, 'Structural and electrochemical studies of WO3 films deposited by pulsed spray pyrolysis', Solar Energy Materials and Solar Cells, 90 (2006) 2471-2479.
[47]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Miiller, P. Liska,N. Vlachopoulos, and M. Gr¨atzel, 'Conversion of light to electricity by cis −X2Bis (2,2D-bipyridyl-4,4D-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = C1−,Br−, I−,CN−, andSCN−) on nanocrystalline TiO2 electrodes', J. Am. Chem. Soc, 115 (1993) 6382-6390.
[48]M. G´omez, J. Rodr´ımguez, S. Tingry, A. Hagfeldt, S. E. Lindquist, and C.G. Granqvist, 'Photoelectrochemical effect in dye sensitized, sputter deposited Ti oxide films: The role of thickness-dependent roughness and porosity', Solar Energy Materials and Solar Cells, 59 (1999) 277-287.
[49]N. G. Park, G. Schlichthorl, J. Van de Lagemaat, H. M. Cheong, A. Mascarenhas, A. J. Frank, 'Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes', J. Phys. Chem. B, 103 (1999) 3308-3314.
[50]Sangwook Lee, Jin Young Kim, Kug Sun Honga, Hyun Suk Jung, Jung-Kun Lee, Hyunho Shin, “Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode”, Sol. Ener. Mater. Sol. Cells, 90 (2006) 2405-2412.
[51]Gopal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K.Varghese, Craig A.Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells”, Nano Letters, 6 (2006) 215-218.
[52]F. Pichot, J. R. Pitts, B. A. Gregg, “Low-Temperature Sinter of TiO2 Colloids: Application to Flexible Dye-Sensitized Solar Cells”, Langmuir, 16 (2000) 5626-5630.
[53]Satoshi Uchida and Miho Tomiha, 'Flexible dye-sensitized solar cells by 28 GHz microwave irradiation', Journal of Photochemistry and Photobiology A: Chemistry, 164 (2004) 93–96.
[54]Tsutomu Miyasaka and Yujiro Kijitori, 'Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers, 'Journal of the Electrochemical Society, 151 (2004) A1767-A1773.
[55]J. H. Yum, S. S. Kim, D. Y. Kim and Y. E. Sung, 'Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells,' Journal of Photochemistry and Photobiology A: Chemistry, 173 (2005) 1-6.
[56]T. Yamaguchi, N. Tobe, D. Matsumoto and H. Arakawa, 'Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes', Chem. Commun, 45 (2007) 4767-4769.
[57]Man Gu Kanga, Nam-Gyu Parka, Kwang Sun Ryua, Soon Ho Changa, Kang-Jin Kimb, 'A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate,' Solar Energy Materials & Solar Cells, 90 (2006) 574–581.
[58]Seigo Ito, Ngoc-Le Cevey Ha, Guido Rothenberger, Paul Liska, Pascal Comte, Shaik M. Zakeeruddin, Pe´ter Pe´chy, Mohammad Khaja Nazeeruddin and Michael Grätzel, 'High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode' ChemComm, 29 (2006) 4004–4006.
[59]G. Schlichtho1rl, N. G. Park, and A. J. Frank, “Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells”, J. Phys. Chem. B, 103 (1999) 782-791.
[60]B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, “Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces”, J. Phys. Chem. B 105 (2001) 1422-1429.
[61]Zhong-Sheng Wang, Kazuhiro Sayama, and Hideki Sugihara, ' Efficient Eosin Y Dye-Sensitized Solar Cell Containing Br-/Br3- Electrolyte,' J. Phys. Chem. B, 109, (2005) 22449-22455.
[62]G. R. A. Kumara, S. Kaneko, M. Okuya, and K. Tennakone, 'Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a CuI Crystal Growth Inhibitor', Langmuir, 18 (2002) 10493-10495.
[63]Peng Wang, Shaik M. Zakeeruddin, Jacques-E. Moser, Robin Humphry-Baker, and Michael Gratzel, 'A Solvent-Free, SeCN-/(SeCN)3- Based Ionic Liquid Electrolyte forHigh-Efficiency Dye-Sensitized Nanocrystalline Solar Cells', J. American. Chem. Soc., 126 (2004) 7164-7165.
[64]Xing Fan, Zengze Chu, Lin Chen, Chao Zhang, Fuzhi Wang, Yanwei Tang, Jianliang Sun and Dechun Zou, 'Fibrous flexible solid-type dye-sensitized solar cells without transparent conducting oxide,'Appl. Phys. Lett., 92 (2008) 113510.
[65]K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata, “High-performance carbon counter electrode for dye-sensitized solar cells”, Sol. Ener. Mater. Sol. Cells, 79 (2003) 459-469.
[66]K. Suzuki, M. Yamaguchi, M. Kumagai and S. Yanagida, “Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells”, Chem. Lett., 32 (2003) 28-29.
[67]T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, E. Abe, “Properties of several types of novel counter electrodes for dye-sensitized solar cells”, J. of Electroanal. Chem., 574 (2004) 77-83.
[68]Hara, K.; Arakawa H., Handbook of Photovoltaic Science and Engineering, edited by Luque, A. and Hegedus, S., John Wiley & Sons, Inc., England, (2003) 663-700.
[69]G. Hodes, “Electrochemistry of Nanomaterials”, Chapter 6, Wiley-VCH, Cambridge, (2001).
[70]S. Södergren, A. Hagfeldt, J. Olsson, S.-E. Lindquist, “Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells”, J. Phys. Chem., 98 (1994) 5552-5556.
[71]G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, I. Uhlendorf, “Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-sensitized, Nanocrystalline Photovoltaic Cells”, J. Phys. Chem., 103 (1999) 692-698.
[72]G. Schlichthörl, N. G. Park, A. J. Frank, “Evaluation of the Charge-CollectionEfficiency of Dye-sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem., 103 (1999) 782-791.
[73]D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles and I. Riess, Nature of Photovoltaic Action in Dye-Sensitized Solar Cells, J. Phy. Chem. B, 104 (2000) 2053-2059.
[74]A. Zaban, M. Greenshtein, J. Bisquert, 'Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements', J. Chem. Phys. Chem. 4 (2003) 859-864.
[75]J. Bisquert, V. Vyacheslav, S. Vikhrenko, 'Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells', J. Phys. Chem. B 108 (2004) 2313-2322.
[76]蕭光宏,二氧化鈦微結構對染料敏化太陽能電池光電效能的影響,國立臺灣大學化學所,碩士論文,2008。
[77]J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Sero, 'Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method', J. Am. Chem. Soc. 126 (2004) 13550-13559.
[78]張立德、牟季美,奈米材料與奈米結構,滄海書局,2002 年6 月初版,第94-100頁。
[79]簡國明等人,奈米二氧化鈦專利地圖與分析,北市,行政院國家科學委員會科學技術資料中心,2003,第18-23頁。
[80]A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev. 95 (1995) 735-738.
[81]高濂,鄭珊,張青紅,奈米二氧化鈦光催化材料及應用,化學工業出版社, 2002,第35頁。
[82]S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, 'Influence of scattering layers on efficiency of dye-sensitized solar cells', Solar Energy Materials and Solar Cells, 90 (2006) 1176-1188.
[83]S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, S. Yoshikawa, 'Single- and double-layered mesoporous TiO2/P25 TiO2 electrode for dye-sensitized solar cell', Solar Energy Materials and Solar Cells, 86 (2005) 269-282
[84]葛偉傑等人,染料敏化太陽能電池TiO2製備極多孔膜研究進展,環境化學,第二十四卷,第六期,第726-730頁。
[85]M. Adachi, Y. Murata, I. Okada and S. Yoshikawa. “Formation of titania nanotubes and applications for dye-sensitized solar cells.” J. Electrochem. Soc. 150 (2003) G488-G493.
[86]P. Hoyer. “Formation of a titanium dioxide nanotube array.” Langmuir. 12 (1996) 1411-1413.
[87]D.V. Bavykin, J.M. Friedrich, A.A. Lapkin, and F.C. Walsh “Stability of Aqueous Suspensions of Titanate Nanotubes” Chem. Mater. 18 (2006) 1124-1129.
[88]M. Zhang, Z.-S. Jin, J.-W. Zhang, X.-Y. Guo, J.-J. Yang, W. Li, X.-D. Wang and Z.-J. Zhang. “Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotube H2Ti2O4(OH)2.” J. Mol. Catal. A 217 (2004) 203-210.
[89]胡紀準,膠體與界面化學,廣州,準南理工大學出版社,1997,p254-277。
[90]鄭詔仁,水性PU之流變性質研究,國立中央大學,碩士論文,2000。
[91]王立仁,自磁種凝絮污泥回收再利用奈米磁性顆粒─以化學機械研磨廢水為 例,國立中央大學,碩士論文,2000。
[92]高濂,納米暪體個分散與表面改性,北京:材料學與工程出版中心,2004,第112~113頁。
[93]S. N. Heaven, 'Electrophoretic Deposition as a Processing Route for Ceramics', Advanced Ceramic Process and Technology, (1990) 255-283.
[94]林楠盛,放電加工技術之應用理論與實務,機械工業雜誌10 (1991) 257-274。
[95]劉明坤,真空潛弧製程製備二氧化鈦奈米微粒懸浮液之製程開發及其最佳化,台北科技大學機電整合研究所,碩士論文,2002 年6 月。
[96]曹茂盛,關長斌,徐甲強,納米材料導論,哈爾濱工業大學出版社,民87年
[97]T.Kasuga﹐M. Hiramatsu﹐A. Hoson﹐T. Sekino﹐K.Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 14 (1998) 3160–3163.
[98]T. Kasuga﹐M. Hiramatsu﹐A. Hoson﹐T. Sekino﹐K. Niihara, “Titania nanotubes prepared by chemical processing”, Adv. Mater. 11 (1999) 1307-1311.
[99]Q. Chen, G. H. Du, S. Zhang and L. M. Peng, “The structure of titanate nanotubes.” Acta. Cryst. B 58 (2002) 587-593.
[100]D.V. Bavykin, V.N. Parmon, A.A. Lapkin and F.C. Walsh, “The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes”, J. Mater. Chem. 14 (2004) 3370-3377.
[101]B.-D. Yao, Y.-F. Chan, X.-Y. Zhang, W.-F. Zhang, Z.-Y. Yang, and N. Wang. “Formation mechanism of TiO2 nanotubes”, Appl. Phys. Lett. 82 (2003) 281-283.
[102]M. Zhang, Z.-S. Jin, J.-W. Zhang, X.-Y. Guo, J.-J. Yang, W. Li, X.-D. Wang and Z.-J. Zhang. “Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotube H2Ti2O4(OH)2.” J. Mol. Catal. A 217 (2004) 203-210.
[103]R. Ma, K. Fukuda, T. Sasaki, M. Osada and Y. Bando. “Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations.” J. Phys. Chem. B 109 (2005) 6210-6214.
[104]林昱呈,電泳披覆法製備錳鋅鐵氧磁體鍍膜之研究,國立成功大學材料科學及工程學系,碩士論文,2002年6月。
[105]A. Sussman and T. J. Ward, 'Electropheretic Deposition of Coatings from Glass- Isopropanol Slurries', RCA Review, 42 (1981) 178-197.
[106]H. C. Hamaker, 'Formation of a Deposit by Electrophoresis', Trans. Faraday Soc., 36 (1940) 287-295.
[107]Yu. A. Makhnovskii, A. M. Berezhkovskii, D.-Y. Yang, S.-Y. Sheu, and S. H. Lin, 'Trapping by clusters of traps', PHYSICAL REVIEW E, 61 (2000) 6302-6307.
[108]H. Koelmans, 'Suspensions in non-aqueous media', Philips Research Reports, 10 (1955) 161-193.
[109]魏志豪,電泳披覆製備奈米氧化銅薄膜及其特性研究,國立台北科技大學製造科技研究所,碩士論文,2005。
[110]楊化桂、陳雪花、古宏晨、方圖南,pH 值對二氧化鈦懸浮體流變性的影響,化學通報,No.200237,2000。
[111]郭東紅、唐芳瓊,不同表面活性劑對二氧化鈦顆粒分散穩定性的影響,化學通報,No.100101,2000。
[112]李傳宏、陳利君、葉昱昕,Zeta 電位測定儀在奈米粉體的應用,工業材料雜誌,190 期,民91年10月
[113]H.-S. Jung, S.-W. Lee, J.-Y. Kim, K.-S. Hong, Y.-C. Lee, K.-H. Ko, “Correlation between dispersion properties of TiO2 colloidal sols and photoelectric characteristics of TiO2 films”, J. Colloid and Interface Sci. 279 (2004) 479-483.
[114]M.-C. Kao, H.-Z. Chen, S.-L. Young, C.-Y. Kung, C.-C. Lin, “The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells”, Thin Solid Films 517 (2009) 5096-5099.
[115]Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida and S. Yoshikawa, “Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells”, Cent. Eur. J.Chem. 4 (2006) 476–488.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44818-
dc.description.abstract本文是研究以三種奈米級氧化鈦材料;放電式奈米流體製程(EDNP)產出二氧化鈦(TiO2)奈米粒子、商用P25(TiO2)粒子以及利用水熱式化學反應改質P25而成的氧化鈦(TiO)奈米管,分別應用於染料敏化太陽能電池的光電極材料。藉由旋轉加熱塗佈平台裝置與電泳沉積技術,將奈米粒子均勻的塗佈沉積在ITO導電玻璃上形成薄膜,再浸泡入N719 染料中12小時以上作為DSSC的光電極元件。EDNP產出的TiO2奈米粒子具有優質的銳鈦礦晶相性質,粒徑尺寸可控制在20~50nm之間。奈米流體的表面電位約為-22 to -28.8mV,所以粒子是穩定懸浮於去離子水內。添加微量的介面活性劑Triton X-100在導電玻璃表面上,可以輔助製成均勻與緻密的TiO2薄膜,然後持續加熱旋轉平台達200℃以上就能去除混入的介面活性劑。ED(TiO2)薄膜也展現較佳的染料吸附成效,甚至不必藉由熱處理程序來提升本質特性。經過DSSC能量轉換分析結果呈現,比較厚的薄膜結構將提升Jsc而導致較高的光電轉換效率(η)5.37%。但是,當薄膜結構太厚(超過20μm),Voc與FF兩者都會逐漸下降而導致DSSC效率變差。P25(TiO2)搭配異丙醇(IPA)之膠體添加1x10-4的電解質Mg(NO3)2.6H2O可維持膠體的穩定;電泳沉積薄膜的最佳電場強度在40V/cm時之薄膜堆積效率最佳,並且呈現高平整特性的薄膜表面粗糙度(Ra=1005.725Å)。以400℃高溫熱處理持續30分鐘有助於P25(TiO2)薄膜的銳鈦礦晶相轉強並且提高薄膜緻密性,多層電泳沉積不僅可以防止薄膜因內部應力的破壞,並且能夠降低裂縫缺陷的存在,使得TiO2薄膜的粒子增加染料分子吸附量,進而提升DSSC之光電流密度至12.2mA/cm2(η=5.29%)。TiO奈米管(Tnt)是無晶相的鈦酸鹽結構[H2Ti3O7],雖然奈米管擁有較大的比表面積能吸附較多的染料,但是因為材料性質無法像銳鈦礦或是金紅石一樣具有良好的半導體特性,其能量轉換效率最高也只有3.16% (9μm)。因此,從P25改質後所得到初形成的Tnt不適合直接作為光電極材料的應用。zh_TW
dc.description.abstractThe investigation is to apply three kind of oxide titanium nanomaterials, TiO2 nanoparticles by electrical-discharge-nanofluids-process (EDNP), commercial P25 nanopowders (TiO2) and TiO nanotube which made by hydrothermal chemistry reaction to be photoelectrode material of dye sensitized solar cell. Through spreading nanoparticles evenly onto the ITO glass by spin-heat platform coats a TiO2 thin film and then soaks it in the dye N719 more than 12 hours to prepare for the photoelectrode device. The TiO2 nanoparticles produced by EDNP has premium anatase crystal property, and its diameter can be controlled within a range between 20-50 nm. The surface energy zeta potential of nanofluid is about -22 to -28.8 mV, it is a stable particles suspension in the DI water. Using a trace of surfactant Triton X-100 upon the surface of ITO glass can helpful produce a uniform and dense TiO2 thin film, heating up the spin platform to over 200℃ is able to eliminate mixed surfactant. The ED(TiO2) film presents excellent dye absorption performance as well and even doesn’t through heat treatment procedure to enhance essential property. Results of energy analysis show the thicker film structure will increase the Jsc generation that causes higher conversion efficiency (η) 5.37%. But, as the film structure is large thick condition (over 20μm), both Voc and FF will decline gradually to lead bad of DSSC efficiency.
The P25(TiO2)/IPA colloid could well suspend when it mixed with electrolyte 10-4M of Mg(NO3)2.6H2O. The optimal electric field intensity of EPD indicates at 40V/cm, which produce well thin film roughness about 1005.725Å. Through 400℃ heat treatment to keep 30 minutes for P25(TiO2) film is able to reinforce helpfully the anatase crystalline property improvement and density consolidation. Multilayers EPD could not only prevent inner stress to breack film structure but also decrease vacancy and crack defect in the film, and absorb more quantity of dye molecule on the P25(TiO2) particle surface to increase photocurrent density of DSSC at 12.2mA/cm2(η=5.29%). TiO nanotube (Tnt) belongs amorphous H2Ti3O7 phase, even though the Tnt has higher specific surface area to absorb huge dye molecule, but its material property is not like anatase or ruitle phase to present great semiconductor feature as well, its best η result is 3.16% at 9μm thickness. Consequently, the initial phase changed of Tnt, which made by chemical reaction from P25, is not best suitable for photoelectrode material application directly.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:55:38Z (GMT). No. of bitstreams: 1
ntu-99-D93522022-1.pdf: 14271392 bytes, checksum: 200227b128bb66c5a780e719c4b6524c (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要.......................................................I
ABSTRACT..................................................II
目錄......................................................IV
圖目錄..................................................VIII
表目錄..................................................XIII
符號說明.................................................XIV
第一章 緒論................ ...............................1
1-1前言.................... ...............................1
1-2 研究背景............... ...............................2
1-3 研究動機............... ...............................3
1-4 論文架構..............................................5
第二章 DSSC科學理論與文獻回顧.............................10
2-1染料敏化太陽能電池.....................................10
2-1-1導電基板.............................................10
2-1-2 染料................................................10
2-1-3 多孔性奈米半導體薄膜電極............................13
2-1-4 氧化還原電解質......................................16
2-1-5 反電極..............................................17
2-2 DSSC的發生理論........................................17
2-2-1 DSSC電化學原理......................................17
2-2-2 電子擴散傳遞理論....................................19
2-2-3 DSSC的耗損機制......................................19
2-3 DSSC的性能分析........................................20
2-3-1 開路電壓(Voc)與短路電流(Isc)........................20
2-3-2 I-V curve的光電轉換效率與充填因子...................21
2-3-3入射光子-電子轉換效率IPCE............................21
2-3-4 開路電壓衰退量測法OCVD..............................22
2-4奈米材料的應用.........................................23
2-4-1 物理法製程技術......................................23
2-4-2 化學法製程技術......................................23
2-4-3 光電極材料- TiO2奈米粒子............................24
2-4-4 光電極材料- TiO奈米管...............................24
2-5膠體分散體系的穩定與聚沉...............................24
2-5-1膠體分散體系三大理論.................................24
2-5-2電雙層理論...........................................27
2-5-3 表面電位............................................27
第三章 實驗裝置與程序.....................................43
3-1實驗材料與分析檢驗設備.................................43
3-1-1實驗材料.............................................43
3-1-2檢驗設備.............................................43
3-1-2-1掃描式電子顯微鏡...................................44
3-1-2-2穿隧式電子顯微鏡...................................44
3-1-2-3 X光繞射分析儀.....................................45
3-1-2-4紫外光/可見光光譜吸收儀............................45
3-1-2-5雷射光散射儀.......................................46
3-1-2-6光學干涉式表面輪廓儀...............................47
3-1-2-7電池性能測試分析系統...............................47
3-1-3 前置準備............................................47
3-1-3-1透明導電基板之清潔.................................47
3-1-3-2反電極製備.........................................48
3-2 物理法-放電式製做奈米粒子.............................48
3-2-1放電製程原理.........................................48
3-2-2放電加工參數控制.....................................49
3-2-3放電式奈米流體製程設備...............................51
3-2-4 EDNP實驗流程........................................52
3-3化學法-水熱反應式製做奈米管............................53
3-3-1水熱反應式原理.......................................53
3-3-2水熱反應式實驗設備與流程.............................53
3-4光電極製做實驗與分析...................................54
3-4-1旋轉加熱塗佈.........................................54
3-4-2電泳沉積.............................................55
3-4-2-1電泳原理...........................................55
3-4-2-2電泳設備與實驗流程.................................58
3-4-3染料N719與電解質的配置...............................58
3-5 DSSC組裝程序與光電轉換效率實驗........................59
3-5-1 DSSC組裝程序........................................59
3-5-2 實驗流程............................................59
第四章 實驗結果與討論.....................................80
4-1 物理法-放電式產出奈米粒子的製備成果...................80
4-1-1 放電製程控制對TiO2 nanoparticles的影響..............80
4-1-2 粒子外形檢測........................................82
4-1-3粒子的成份分析.......................................82
4-1-4粒子晶相檢測.........................................83
4-1-5奈米流體表面電位.....................................83
4-1-6奈米粒子懸浮液光吸收效應.............................84
4-2化學法-水熱式產出奈米管的製備成果......................84
4-2-1奈米管外形檢測.......................................85
4-2-2奈米管的晶相分析.....................................85
4-3薄膜成形與檢測.........................................86
4-3-1旋轉加熱塗佈成形與檢測結果...........................86
4-3-2電泳沉積薄膜成形與檢測結果...........................87
4-3-2-1 P25奈米粒子懸浮液穩定性...........................87
4-3-2-2電泳沉積-電壓控制的影響............................88
4-3-2-3電泳沉積-厚度控制..................................89
4-3-2-4 晶相結構分析......................................90
4-4光電極分析與光電轉換效率量測...........................90
4-4-1薄膜對染料的吸附特徵.................................90
4-4-2薄膜厚度結構對DSSC效率的影響.........................91
4-4-3 (TiO2)/ITO燒結溫度對DSSC效率的影響..................95
4-4-4初形成奈米管作為光電極的DSSC效率.....................96
4-4-5薄膜厚度對充填因子的影響.............................97
第五章 研究結論與展望....................................128
5-1研究結論..............................................128
5-2未來展望與建議........................................131
參考文獻.................................................133
附錄A....................................................145
dc.language.isozh-TW
dc.subject光電轉換效率zh_TW
dc.subject銳鈦礦zh_TW
dc.subject二氧化鈦zh_TW
dc.subject光電極zh_TW
dc.subject電泳沉積zh_TW
dc.subject體製程zh_TW
dc.subject米&#63946zh_TW
dc.subject放電式奈zh_TW
dc.subjectphotoelectrodeen
dc.subjectenergy conversion efficiencyen
dc.subjectanataseen
dc.subjectelectrical-discharge nanofluid-process(EDNP)en
dc.subjectElectrophoresis deposition(EPD)en
dc.subjectTiO2 filmen
dc.titleTiO2奈米粒子應用於染料敏化太陽能電池光電極之研究zh_TW
dc.titleInvestigation of Applying TiO2 Nanoparticles in Photoelectrode of Dye Sensitized Solar Cellen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee張合(Ho Chang),卓清松(Ching-song Jwo),張西龍,陳輝俊,吳文方
dc.subject.keyword放電式奈,米&#63946,體製程,電泳沉積,光電極,二氧化鈦,銳鈦礦,光電轉換效率,zh_TW
dc.subject.keywordelectrical-discharge nanofluid-process(EDNP),Electrophoresis deposition(EPD),photoelectrode,TiO2 film,anatase,energy conversion efficiency,en
dc.relation.page145
dc.rights.note有償授權
dc.date.accepted2010-06-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
13.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved