Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44795
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張文亮(Wen-Lian Chang)
dc.contributor.authorTing-Chun Chienen
dc.contributor.author簡庭駿zh_TW
dc.date.accessioned2021-06-15T03:55:06Z-
dc.date.available2011-09-01
dc.date.copyright2010-07-02
dc.date.issued2010
dc.date.submitted2010-06-25
dc.identifier.citation牛山 泉 (2002) 風車工學入門,林輝政 (2009) 譯,澎湖:澎湖科技大學。
巫立群、鍾竺均、張聖時 (2005) 天然植物萃出抗菌清潔劑之特性與功能評估,中華技術學院學報,期32,頁33-44。
洪成憲 (2008) 水產養殖增氧機葉片之設計與實驗驗證,國立高雄第一科技大學系統資訊與控制研究所碩士論文。
陳俊明 (2009) 水車對養殖池水流水質特性影響之研究,國立中興大學農業機械工程研究所碩士論文。
Ahmad, T., Boyd, C.E. (1988) Design and Performance of Paddle Wheel Aerators, Aquacultural Engineering, Vol.7, pp.39-62.
Armstrong, M.S., Boyd, C.E. (1982) Oxygen transfer calculations for a tractor-powered paddlewheel aerator, American Fisheries Society, Vol.111, pp.361-366.
Betz, A. (1920) Das maximum der theoretisch moglichen ausnutzung des windes durch windmotoren, Zeitschrift fur das gesamte Turbinenwesen, Vol.26, pp.307-309.
Boyd, C.E., Tucker, C.S. (1979) Emergency aeration of fish ponds, American Fisheries Society, Vol.108, pp.229-306.
Boyle, W.C., Stenstrom, M.K., Campbell, H.J., Jr., Brenner, R.C. (1989) Oxygen transfer in clean and process water for draft tube turbine aerators in total barrier oxidation ditches, Water Pollution Control Federation, Vol.61, pp.1449-1463.
Boyd, C.E. (1998) Pond water aeration systems, Aquacultural Engineering, Vol.18, pp.9-40.
Busch, R.L., Tucker, C.S., Steeby, J.A., Reams, J.E. (1984) An Evaluation of Three Paddlewheel Aerators used for Emergency Aeration of Channel Catfish Ponds, Aquacultural Engineering, Vol.3, pp.59-69.
Cleasby, J.L., Baumann, E.R. (1968) Oxygenation efficiency of a bladed rotor, Water Environment Federation, Vol.40, pp.412-424.
Delgado, C.P., Avnimelech, Y., McNeil, R., Bratvold, D., Browdy, C.L., Sandifer, P. (2003) Physical, chemical and biological characteristics of distinctive regions in paddlewheel aerated shrimp ponds, Aquaculture, Vol.217, pp.235-248.
Fast, A.W., Carpenter, K.E., Estilo, V.J., Gonzales, H.G. (1988). Effects of water depth and artificial mixing on dynamics of Phillipines brackishwater shrimp ponds. Aquacultural Engineering, Vol.7, pp.349-61.
Kirke, B. (1995) Wind-powered aeration for wastewater treatment, aquaculture and lake destratification, Wind Engineering, Vol.19, pp.1-12.
Liu, C.C.K., Park, J.W., Migita, R., Qin, G. (2002) Experiments of a prototype wind-driven reverse osmosis desalination system with feedback control, Desalination, Vol.150, pp.277-287.
Liu, C.C.K., Xia, W., Park, J.W. (2007) A wind-driven reverse osmosis system for aquaculture wastewater reuse and nutrient recovery, Desalination, Vol.202, pp.24-30.
Lossow, K., Gawrońska, H., Jaszczułt, R. (1998) Attempts to use wind energy for artificial destratification of lake Starodworskie, Polish Journal of Environmental Studies, Vol.7, pp.221-227.
Lovell, R.T. (1979) Fish culture in the United States, American Association for the Advancement of Science, Vol.206, pp.1368-1372.
Moore, J.M., Boyd, C.E. (1992) Design of small paddle wheel aerators, Aquacultural Engineering, Vol.11, pp.55-69.
Peterson, E.L., Walker, M.B. (2002) Effect of speed on Taiwanese paddlewheel aeration, Aquacultural Engineering, Vol.26, pp.129-147.
Petrille, J., Boyd, C.E. (1984) Comparisons of oxygen-transfer rates and water-circulation capabilities of emergency aerator for fish ponds, Aquaculture, Vol.37, pp.377-386.
Qin, G., Liu, C.C.K., Richman, N.H. (2005) Aquaculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: a pilot study on Coconut Island, Hawaii, Aquacultural Engineering, Vol.32, pp.365-378.
Superior Windmill Incorporated (2009) Attica reservoir utilizes wind power, Water Environment & Technology, Vol.21, pp.73,75,77.
USEPA (1983) Development of standard procedures for evaluating oxygen transfer devices, United States Environmental Protection Agency.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44795-
dc.description.abstract曝氣增氧機現今被廣泛利用在水產養殖業,增加水中溶氧濃度、促進靜置的水體流動、消除水體分層現象、使底層能得到氧氣行好氧分解、減少有毒氣體的產生。然而考量曝氣增氧機長時間啟動需要耗費大量能源,若能以風能轉換成為動力來源,則在節能減碳上將有極大的助益。
現地試驗利用嘉義縣明華人工溼地內設有之長臂型葉輪曝氣增氧機及噴泉式曝氣增氧機,瞭解曝氣增氧機對台灣污水處理型人工溼地淨化效能之影響,將溼地視為一處理單元,連續24hr每小時一次測量入出流的溶氧、溫度、生化需氧量、總凱氏氮。研究發現有無啟動曝氣增氧機對於標準氧氣傳輸速率 (SOTR) 並無顯著差別,但未啟動時溶氧日變化量較大,生化需氧量之去除率以啟動曝氣時效果較佳,總凱氏氮則以未啟動時效果較佳,在曝氣增氧機全開的情況下,標準曝氣效率為0.090 kg O2/kWh。
室內研究上,參考多翼型風機及葉輪式曝氣增氧機,設計小型風力葉輪曝氣機 (後文中皆以風力水車代稱),將其置於水槽中加入污水0.0227 m3、水深0.1m,以風速2.0-4.5 m/s 測試在打水深度0.025m及0.045m下溶氧變化的情形。研究發現,水車轉速提高時氧氣體積質量傳輸係數 (KLa) 也隨之增加,但在相等低轉速時,打水深度0.045m有較高的KLa。再比較標準曝氣效率 (SAE),打水深度0.025m為1.21 kg O2/kWh、打水深度0.045m為4.54 kg O2/kWh,相較前人的曝氣增氧機研究,風力水車有較高的SAE。利用多元線性回歸、變異數分析及T檢定評估打水深度及水車轉速對KLa的影響程度,發現水車轉速對KLa的影響較顯著,打水深度比的顯著性則較低。
研究認為,風力水車確實可節省能源電力耗用,也可提昇溶氧使水體能成為良好的生物棲息地,可應用於風況良好之河濱人工處理型溼地或沿海漁塭。
zh_TW
dc.description.abstractAerator is widely used in aquaculture today. It improves dissolved oxygen increasing, promotes water body flowing, eliminates the stratification, lets oxygen down into the bottom and makes sediments become aerobic in order to reduce the noxious gas production. However, using aerator will consume massive energy. If we can use green energy such like wind power as one kind of usable power, it will be beneficial to energy conservation and carbon reduction.
In the field, I used multi-paddle wheel aerators and horizontal sprayer aerators at Ming-Hua treatment wetland in Chiayi County to understand the promoting purification efficiency of aerators on wastewater treatment wetlands in Taiwan. Consider the wetland as a process unit, sampled inflow and outflow once per hour continuing 24 hours and measured dissolved oxygen, temperature, biochemical oxygen demand, total Kjeldahl nitrogen. The results showed that there are no significant differences of standard oxygen transfer rate (SOTR) whether the aerator is working or not, but dissolved oxygen had more diurnal variation when the aerator closed. Biochemical oxygen demand removal efficiency was better when the aerator operates then closed, but the total Kjeldahl nitrogen removal efficiency was contrary. The standard aeration efficiency (SAE) of Ming-Hua treatment wetland was about 0.090 kg O2/kWh.
Consider the model of multi-blade windmills and paddle wheel aerators, I designed a small wind power paddle wheel aerator. Performed the aerator in laboratory, and lay it in a tank which water depth is 0.1 m and total volume is 0.0227 m3. Using deferent wind speed (2.0-4.5 m/s) and two paddle depths (0.025m, 0.045m) to test dissolved oxygen change. The results showed that no matter what depth the paddle is, when the paddle wheel rotational speed enhanced, the volumetric mass transfer coefficient (KLa) increased. However, when the paddle depth is 0.045m had higher KLa then the paddle depth is 0.025m in equal slowly rotational speed. The SAE of wind power paddle wheel aerator was 1.21 kg O2/kWh when paddle depth was 0.025m and 4.54 kg O2/kWh when 0.045m. Compared with previous aerators, the wind power paddle wheel aerator had higher SAE. Used multi factor linear regression methods to analyze the variance and use T test to estimate the affected degree of KLa of paddle depth and rotational speed. It showed that rotational speed affected KLa significantly more than paddle depth.
This study showed that the wind power paddle wheel could eliminate energy consume and keep a certain concentration of dissolved oxygen, so that water body could become better habitats. It is possible to set up at treatment wetlands on floodplains or costal aquaculture ponds where the wind condition is stable and continued.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:55:06Z (GMT). No. of bitstreams: 1
ntu-99-R97622034-1.pdf: 3761183 bytes, checksum: 4545c5187b928c75786d6e3fbd5d004f (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要 I
Abstract II
目錄 IV
表目錄 V
圖目錄 V
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目的 6
第二章 理論與方法 7
2.1 氧氣傳輸 7
2.2 風能計算及性能特性因子 10
2.3 水車功率推論 16
2.4 統計分析方法 17
第三章 材料與方法 18
3.1 嘉義明華人工溼地-現有曝氣增氧機現地試驗 18
3.2 室內試驗-風力水車製作及實測 23
第四章 結果與討論 27
4.1 嘉義明華人工溼地曝氣增氧機效能現地試驗 27
4.2 風力水車室內試驗結果 30
第五章 結論與建議 36
5.1 結論 36
5.2 建議 37
參考文獻 38
附錄A - 嘉義明華人工溼地水質試驗結果 i
附錄B - 室內風力葉輪式曝氣增氧機之曝氣試驗分析結果 v
附錄C - 嘉義明華人工溼地定期水質調查結果 viii
dc.language.isozh-TW
dc.subject標準曝氣效率zh_TW
dc.subject風能zh_TW
dc.subject曝氣增氧機zh_TW
dc.subject氧氣體積質量傳輸係數zh_TW
dc.subject標準氧氣傳輸速率zh_TW
dc.subjectaeratoren
dc.subjectstandard aeration efficiencyen
dc.subjectstandard oxygen transfer rateen
dc.subjectvolumetric mass transfer coefficienten
dc.subjectwind energyen
dc.title風能葉輪曝氣促進水域氧氣傳輸之效率zh_TW
dc.titleUsing Paddle Wheels to Improve Oxygen Transfer Efficiency in Water Body by Wind Energyen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張倉榮(Tsang-Jung Chang),任秀慧(Rita Yam),游進裕(Sinite Yu)
dc.subject.keyword風能,曝氣增氧機,氧氣體積質量傳輸係數,標準氧氣傳輸速率,標準曝氣效率,zh_TW
dc.subject.keywordwind energy,aerator,volumetric mass transfer coefficient,standard oxygen transfer rate,standard aeration efficiency,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2010-06-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
3.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved