請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44787完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬劍清(Chien-Ching Ma) | |
| dc.contributor.author | Hong-Cin Liou | en |
| dc.contributor.author | 劉泓嶔 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:54:55Z | - |
| dc.date.available | 2011-08-20 | |
| dc.date.copyright | 2011-08-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-17 | |
| dc.identifier.citation | [1] H. Kawai, “The Piezoelectricity of Poly (vinylidene Fluoride),” Japanese Journal of Applied Physics, vol. 8, Jul. 1969, pp. 975-976.
[2] Q. Chen and P. Payne, “Industrial applications of piezoelectric polymer transducers,” Measurement Science and Technology, vol. 6, 1995, p. 249. [3] A.J. Lovinger, “Ferroelectric Polymers,” Science, vol. 220, 1983, pp. 1115-1121. [4] A. Salimi and A.A. Yousefi, “FTIR studies of β-phase crystal formation in stretched PVDF films,” Polymer Testing, vol. 22, Sep. 2003, pp. 699-704. [5] A.V. Shirinov and W.K. Schomburg, “Pressure sensor from a PVDF film,” Sensors and Actuators A: Physical, vol. 142, Mar. 2008, pp. 48-55. [6] F. Bauer, “Properties of ferroelectric polymers under high pressure and shock loading,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 105, Nov. 1995, pp. 212-216. [7] B. Woodward and R.C. Chandra, “Underwater Acoustic Measurements on Polyvinylidene Fluoride Transducers,” Electrocomponent Science and Technology, vol. 5, 1978, pp. 149-157. [8] Q. Huang, K. Ni, N. Shi, M. Hou, and X. Wang, “A Dynamic Micro Force Sensing Probe Based on PVDF,” Sensors & Transducers, vol. 114, 2010, pp. 122-131. [9] Y. Shen, N. Xi, K.W.C. Lai, and W.J. Li, “A novel PVDF microforce/force rate sensor for practical applications in micromanipulation,” Sensor Review, vol. 24, 2004, pp. 274-283. [10] P. Benech, E. Chambered, and C. Monllor, “Acceleration measurement using PVDF,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 43, 1996, p. 838–843. [11] M. Toda and M.L. Thompson, “Contact-Type Vibration Sensors Using Curved Clamped PVDF Film,” IEEE Sensors Journal, vol. 6, Oct. 2006, pp. 1170-1177. [12] J.S. Schoenwald and J.F. Martin, “PVF2 Transducers for Acoustic Ranging and Imaging in Air,” Ultrasonics Symposium, 1983, pp. 577-580. [13] 潘善盈,馬劍清,「應用PVDF感測器於懸臂梁之主動抑振與揚聲器音壓之控制」,國立臺灣大學機械工程學系碩士論文,2009年。 [14] 吳亦莊,馬劍清,「理論解析與實驗量測壓電平板的面外振動及特性探討」,國立臺灣大學機械工程學系碩士論文,2009年。 [15] “Piezo Film Sensors Technical Manual,” Measurement Specialties, Inc., 1999. [16] “Signal Conditioner Model 2775AM4,” ENDEVCO Corporation. [17] “Instruction Manual of Signal Conditioning Platform,” KISTLER Group, 2008. [18] “How strain gages work,” KYOWA Electronic Instruments Co., Ltd. http://www.kyowa-ei.co.jp/english/products/gages/pdf/howsgw.pdf [19] 「SC-8200應變規信號放大器使用手冊」,多如有限公司。 [20] “MTI-2100 Fotonic Sensor,” MTI Instruments Inc., 2006. [21] J. P. Den Hartog, Advanced Strength of Materials, McGraw-Hill Book Company, Inc., 1952. [22] S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill Book Company, Inc., 1959. [23] J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Publishing Company, 1973. [24] Herbert Reismann, Peter S. Pawlik, Elasticity, John Wiley & Sons, 1980. [25] Karl F. Graff, Wave Motion in Elastic Solids, Dover Publications, Inc., 1991. [26] “Transducer,” WIKIPEDIA. http://en.wikipedia.org/wiki/Transducer [27] “Piezoelectricity,” WIKIPEDIA. http://en.wikipedia.org/wiki/Piezoelectricity [28] “Polyvinylidene fluoride,” WIKIPEDIA. http://en.wikipedia.org/wiki/PVDF | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44787 | - |
| dc.description.abstract | 感測器在彈性材料結構振動的量測實驗中扮演非常重要的角色,一般而言感測器必須能正確擷取振幅、能量、相位等等數據,方能對結構各種響應有一定程度掌握,並提供足夠資訊針對需求進一步控制該結構系統。
PVDF薄膜這類壓電傳感器,在極寬的頻帶中(可至 Hz)皆有穩定的機電效應,使用上有高度耐衝擊、耐紫外線、耐核能輻射、重量極為輕薄等特性,黏貼於結構物上不會增加質量,對待測物動態特性的影響也非常微小,因此被廣泛應用在各種場合,例如結構響應、振動抑制、非破壞性檢測、聲學顯微鏡、水下聽音器、機器人皮膚、生醫儀器等。 本文主要利用PVDF薄膜作為感測器,將其黏貼於懸臂梁、懸臂板與自由邊界厚板三種結構系統上,量測鋼珠落擊試件產生之動態響應,分別觀察不同面積之PVDF薄膜感測器量測表現、PVDF感測器量測訊號與有限元素法軟體暫態模擬分析之比較,以及在振動類型相異之結構上量測結果,根據這些主題探討PVDF感測器之動態量測能力,同時也從時域和頻域圖形上比較與應變規感測器異同之處,並對PVDF感測器的特性有更深一層的認識。 | zh_TW |
| dc.description.abstract | In this thesis, the dynamic sensing characteristics of PVDF film sensor are investigated in many perspectives. First, we compare the sensing results of different PVDF film sizes on a cantilever beam, which showing that the PVDF sensor with size of 5mm × 2.5mm has the best sensing performence. Second, we compare the experiment signals derived by PVDF sensor and the simulation signals of a cantilever plate, where the simulations are evaluated by finite element method software “Abaqus”. The comparing results indicate that the signals from experiments and simulations are highly consistent with each other. At last, we detect and analyze the dynamic responses of a thick plate with fully free boundary condition. The results show that PVDF film sensor has excellent performance in dynamic sensing. Not only can PVDF sensor distinguish the resonant frequencies of a great amount of vibration modes, it can also detect the mode energy correctly, which is proven by comparing the frequency spectrums and the mode shape plots. The strain gage is also applied as a sensing standard to understand the sensing properties of PVDF film sensor, in the reason that strain gage is one of the most convenient and wildly-used sensor to detect the dynamic responses of structures. Our research shows that PVDF film sensor has better dynamic sensing ability than strain gage. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:54:55Z (GMT). No. of bitstreams: 1 ntu-100-R98522512-1.pdf: 21405076 bytes, checksum: 4e1ec49d294c4f1109db22b6a549dd1d (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 V 表目錄 XVIII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 內容簡介 7 第二章 PVDF薄膜感測器與實驗儀器簡介 9 2.1 聚偏二氟乙烯(PVDF)薄膜感測器 9 2.1.1 感測原理 9 2.1.2 極性與訊號強度實驗 12 2.2 實驗儀器設備 21 2.2.1 電荷放大器 21 2.2.2 應變規訊號適調放大器(Strain gage signal conditioning amp.) 26 2.2.3 光纖位移計(Fotonic sensor, FS) 28 第三章 懸臂梁系統識別 31 3.1 懸臂梁理論 31 3.1.1 懸臂梁彎曲模態(Bending mode)與側向模態(Lateral mode) 31 3.1.2 懸臂梁扭轉模態(Torsional mode) 33 3.1.3 懸臂梁軸向模態(Longitudinal mode) 35 3.2 PVDF感測器面積與系統識別暫態波傳能力之探討 36 3.2.1 彎曲與扭轉模態識別 36 3.2.2 側向與軸向模態識別 42 3.3 討論 44 第四章 懸臂板系統識別與動態量測 137 4.1 等向性薄板統御方程式與邊界條件 137 4.2 PVDF感測器與懸臂板系統暫態波傳識別能力之探討 143 4.2.1 面外振動模態識別 143 4.2.2 暫態波傳實驗量測與理論分析模擬 145 第五章 自由邊界厚板系統動態特性 233 5.1 薄板理論計算 233 5.2 面外振動模態識別 233 第六章 結論與未來展望 285 6.1 結論 285 6.2 未來展望 287 參考文獻 289 附錄 291 A. PVDF薄膜規格 291 B. ENDEVCO 2775AM4 訊號適調議規格 293 C. KISTLER Type5064B11電荷放大器與Type2852A11適調平台規格 295 D. MTI-2100光纖位移計規格 297 | |
| dc.language.iso | zh-TW | |
| dc.subject | 結構動態響應量測 | zh_TW |
| dc.subject | PVDF薄膜感測器 | zh_TW |
| dc.subject | Dynamic sensing | en |
| dc.subject | PVDF film sensor | en |
| dc.title | PVDF感測器應用於結構系統之動態量測能力探討 | zh_TW |
| dc.title | Investigations of the Dynamic Sensing Ability of PVDF Sensor on Structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃錦煌,鄭志鈞,劉昭華 | |
| dc.subject.keyword | PVDF薄膜感測器,結構動態響應量測, | zh_TW |
| dc.subject.keyword | PVDF film sensor,Dynamic sensing, | en |
| dc.relation.page | 297 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 20.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
