請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4477完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王佩華 | |
| dc.contributor.author | Tung Lin | en |
| dc.contributor.author | 林彤 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:42:32Z | - |
| dc.date.available | 2020-08-31 | |
| dc.date.available | 2021-05-14T17:42:32Z | - |
| dc.date.copyright | 2015-08-31 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | 王之仰、江友中、邱明堂、徐志宏、張誌益、莊國賓、傅龍明、陳又嘉、陳福旗、陳幼光、廖明輝、劉宏仁、鄭雪玲。2011。分子檢測技術實習,第77-110頁。國立屏東科技大學。屏東縣。 江榮吉。1975。臺灣東部山坡地肉牛生產之經濟分析。國立臺灣大學農學院農業經濟學系。臺北市。 行政院農業委員會統計室。2014。102 年農業統計年報。行政院農業委員會。臺北市。 行政院農業委員會統計室。2015。104 年第 1 季畜禽統計調查結果。行政院農業委員會。臺北市。 呂秀英。2013。臺灣肉牛之生產成本與利益分析。臺灣銀行季刊。64 (1):144-164。 宋永義。2003。有怎樣的牛便有怎樣的產業文化。台灣畜產種原資訊網。取自:http://www.angrin.tlri.gov.tw/apec2003/apec2003_C/TW_CULT/TW_CULT.htm 李光復。2000。臺灣黃牛保種簡介。行政院農業委員會畜產試驗所恆春分所。屏東縣。 李光復。2008。臺灣黃牛來源與種原保存工作通述。行政院農業委員會畜產試驗所五十週年所慶學術研討會(遺傳育種)。臺灣省畜產試驗所專輯第113號,臺南縣。 李育才。2014。國產與進口農產品分流管理-國產牛肉生產追溯制度。農政與農情,第267期。行政院農業委員會。臺北市。 李培芬、陳宛均、徐秀君、黃佩俐、莊聖儀、余忠翰、許榕容、連裕益、李依紋、蕭人瑄、賴玓、陳韻如、劉益忠。2006。臺灣的自然資源與生態資料庫III農林漁牧,第182-183頁。行政院農業委員會林務局。臺北市。 胡智益、蔡右任、林順福。2011。DNA分子標誌應用在茶樹之現況與潛力。農業生技產業季刊。25:30-37。 孫寅瑞。2001。牛肉成為台灣漢人副食品的歷史觀察。國立中央大學歷史研究所碩士論文。桃園市。 常洪、耿社民、武彬、陳幼春。1990。中國黃牛生態種特徵及其利用方向:中國黃牛考源-中國黃牛源流考之一。中國農業科學院畜牧研究所。農業出版社。北京。 張秀鑾、黃鈺嘉。2005。乳量乳質優勢乳牛品種之簡介。台灣畜產種原資訊網。取自:http://www.angrin.tlri.gov.tw/cow/20051031/2005cow_breed_3-1.htm 張秀鑾。1998。台灣本土畜產種原庫之建立與利用。臺灣省畜產試驗所四十週年所慶家畜禽遺傳育種研討會論文集,第168-180頁。臺灣省畜產試驗所專輯第57號,臺南縣。 黃志覠、魏良原、賈玉祥。2007。臺灣水牛再出發。農政與農情,第177期。行政院農業委員會。臺北市。 黃志覠。1998。臺灣水牛保種。臺灣省畜產試驗所四十週年所慶家畜禽遺傳育種研討會論文集,第160-167頁。臺灣省畜產試驗所專輯第57號,臺南縣。 劉鋼、徐瑞玲、陳文雄。2013。產地國標示與臺灣消費者對國產牛肉之價格溢酬。人文及社會科學集刊。25 (1):1-44。 Agerholm, J. S., F. McEvoy, and J. Arnbjerg. 2006. Brachyspina syndrome in a Holstein calf. J. Vet. Diagn. Invest. 18: 418-422. Agha, S. H., F. Pilla, S. Galal, I. Shaat, M. D’andrea, S. Reale, A. Z. A. Abdelsalam, and M. H. Li. 2008. Genetic diversity in Egyptian and Italian goat breeds measured with microsatellite polymorphism. J. Anim. Breed. Genet. 125: 194-200. Baker, A. J. 2000. Molecular methods in ecology. pp. 235-238. Blackwell Science Ltd., Malden, MA, USA. Barendse, W., S. M. Armitage, L. M. Kossarek, A. Shalom, B. W. Kirkpatrick, A. M. Ryan, D. Clayton, L. Li, H. L. Neibergs, N. Zhang, W. M. Grosse, J. Weiss, P. Creighton, F. McCarthy, M. Ron, A. J. Teale, R. Fries, R. A. McGraw, S. S. Moore, M. Georges, M. Soller, J. E. Womack, and D. J. S. Hetzel. 1994. A genetic linkage map of the bovine genome. Nature Genet. 6: 227-235. Barry, G. H. 2007. Phylogenetic trees made easy: a how-to manual. 3rd ed. Sinauer Assoc. Inc., Sunderland, MA, USA. Blackwell, T. K., and H. Weintraub. 1990. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250: 1104-1110. Bostein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331. Braun, T., M. A. Rudnicki, H. H. Arnold, and R. Jaenish. 1992. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71: 369-382. Charlier, C., J. S. Agerholm, W. Coppieters, P. Karlskov-Mortensen, W. Li, G. de Jong, C. Fasquelle, L. Karim, S. Cirera, N. Cambisano, N. Ahariz, E. Mullaart, M. Georges, and M. Fredholm. 2012. A deletion in the bovine FANCI gene compromises fertility by causing fetal death and brachyspina. PLoS ONE 7: e43085. Chung, E. R., and W. T. Kim. 2005. Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian-Australas. J. Anim. Sci. 18: 1061-1065. Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987-1000. Dieringer, D., and C. Schlotterer. 2003. MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3: 167-169. Drogemuller, C., and A. Kempers. 2000. A TaqI PCR-RFLP at the bovine myogenic factor (MYF5) gene. Anim. Genet. 31: 140-157. Eberle, D., B. Hegarty, P. Bossard, P. Ferre, and F. Foufelle. 2004. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86: 839-848. Efron, B., E. Halloran, and S. Holmes. 1996. Bootstrap confidence levels for phylogenetic trees. Proc. Natl. Acad. Sci. (USA) 93: 13429-13434. Ellegren, H. 2000. Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet. 16: 551-558. Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620. Evett, I. W., and B. S. Weir. 1998. Interpreting DNA evidence: statistical genetics for forensic scientists.1st ed. pp. 126. Sinauer Assoc. Inc., Sunderland, MA, USA. Excoffier, L., and H. E. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10: 564-567. Fang, L., Y. Li, Y. Zhang, D. Sun, L. Liu, Y. Zhang, and S. Zhang. 2013. Identification of brachyspina syndrome carriers in Chinese Holstein cattle. J. Vet. Diagn. Invest. 25: 508-510 FAO/ISAG. 1993. Secondary Guidelines: Measurement of Domestic Animal Diversity (MoDAD): Recommended Microsatellite Markers. Retrieved from: http://dad.fao.org/ FAO/ISAG. 2004. Secondary Guidelines: Measurement of Domestic Animal Diversity (MoDAD): New Recommended Microsatellite Markers. Retrieved from: http://dad.fao.org/ Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. Felsenstein, J. 2002. Phylogeny Inference Package (PHYLIP). Department of genomes scuences and department of Genetics, Univ. of Washington, Seattle, WA, USA. Fonteque, G. V., J. Battilana, E. Paludo, and C. A. D. V. Lima-Rosa. 2014. Genetic polymorphism of fifteen microsatellite loci in Brazilian (blue-egg Caipira) chickens. Pesquisa Vet. Brasil. 34: 98-102. Glenn, T. C., and N. A. Schable. 2005. Isolating microsatellite DNA loci. Meth. Enzymol. 395: 202-222. Green, M. R., and J. Sambrook. 2012. Preparation of plasmid DNA by Alkaline Lysis with SDS: Minipreps. Pages 11-14 in Molecular Cloning: A Laboratory Manual. Vol. 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. Guo, S. W., and E. A. Thompson. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361-372. Hannes, O., F. Noriko, E. Harald, K. Franz, and P. Wolfgang. 2002. Sterol regulatory element binding proteins: relationship of adipose tissue gene expression with obesity in humans. Biochim. Biophys. Acta. 1575: 75-81. Heyen, D. W., J. E. Beever, Y. Da, R. E. Evert, C. Green, S. R. E. Bates, J. S. Ziegle, and H. A. Lewin. 1997. Exclusion probabilities of 22 bovine microsatellite markers in fluorescsnt multiplexes for semi-automated parentage testing. Anim. Genet. 28: 21-27. Higgs, P. 2001. Introduction to Phylogenetics Methods. Manchester Univ. Press, UK. Retrieved from: http://online.itp.ucsb.edu/online/infobio01/higgs/ Huang, Y. Z., H. He, J. J. Sun, J. Wang, Z. J. Li, X. Y. Lan, C. Z. Lei, C. L. Zhang, E. P. Zhang, J. Q. Wang, and H. Chen. 2011a. Haplotype combination of SREBP-1c gene sequence variants is associated with growth traits in cattle. Genome 54: 507-516. Huang, Y. Z., E. P. Zhang, J. Wang, Y. T. Huai, L. Ma, F. Y. Chen, X. Y. Lan, C. Z. Lei, X. T. Fang, J. Q. Wang, and H. Chen. 2011b. A large indel mutation of the bovine ADD1/SREBP1c gene and its effects on growth traits in some native cattle breeds from China. Mol. Biol. Rep. 38: 2037-2042. Huang, Y. Z., H. He, Z. Y. Zhan, Y. J. Sun, M. X. Li, X. Y. Lan, C. Z. Lei, C. L. Zhang, and H. Chen. 2013a. Relationship of polymorphisms within ZBED6 gene and growth traits in beef cattle. Gene 526: 107-111. Huang, Y. Z., M. X. Li, J. Wang, Z. Y. Zhan, Y. J. Sun, J. J. Sun, C. J. Li, X. Y. Lan, C. Z. Lei, C. L. Zhang, and H. Chen. 2013b. A 5'-regulatory region and two coding region polymorphisms modulate promoter activity and gene expression of the growth suppressor gene ZBED6 in cattle. PLoS One 8: e79744. Huang, Y. Z., Y. J. Sun, Z. Y. Zhan , M. X. Li , J. Wang , J. Xue , X. Y. Lan , C. Z. Lei , C. L. Zhang, and H. Chen. 2014a. Expression, SNP identification, linkage disequilibrium, and haplotype association analysis of the growth suppressor gene ZBED6 in Qinchuan beef cattle. Anim. Biotechnol. 25: 35-54. Huang, Y. Z., L. Z. Zhang, X. S. Lai, M. X. Li, Y. J. Sun, C. J. Li, X. Y. Lan, C. Z. Lei, C. L. Zhang, X. Zhao, and H. Chen. 2014b. Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoter activity and DNA methylation in myoblasts. Sci. Rep. 4: 4570-4579. ISAG Conference. 2008. Amsterdam, The Netherlands. Cattle Molecular Markers and Parentage Testing Workshop. Retrieved from: http://www.isag.us/Docs/ISAG2008_CattleParentage.pdf Jarne, P., and P. J. L. Lagoda. 1996. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11: 424-429. Kappes, S. M., J. W. Keele, R. T. Stone, R. A. McGraw, T. S. Sonstegard, T. P. L. Smith, N. L. Lopes-Corrales, and C. W. Beattie. 1997. A second-generation linkage map of the bovine genome. Genome Res. 7: 235-249. Kimura, M. and J. F. Crow. 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725-738. Lee, Y., D. Oh, J. Lee, B. La, and J. Yeo. 2013. Novel single nucleotide polymorphisms of bovine SREBP1 gene is association with fatty acid composition and marbling score in commercial Korean cattle (Hanwoo). Mol. Biol. Rep. 40: 247-254. Li, C., J. Basarab, W. M. Snelling, B. Benkel, B. Murdoch, and S. S. Moore. 2002. The identification of common haplotypes on bovine chromosome 5 within commercial lines of Bos taurus and their associations with growth traits. J. Anim. Sci. 80: 1187-1194. Li, C., J. Basarab, W. M. Snelling, B. Benkel, J. Kneeland, B. Murdoch, C. Hansen, and S. S. Moore. 2004. Identification and fine mapping of quantitative trait loci for backfat on bovine chromosomes 2, 5, 6, 19, 21, and 23 in a commercial line of Bos taurus. J. Anim. Sci. 82: 967-972. Liu Z. J., and J. F. Cordes. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238: 1-37. Markljung, E., L. Jiang, J. D. Jaffe, T. S. Mikkelsen, O. Wallerman, M. Larhammar, X. Zhang, L. Wang, V. Saenz-Vash, A. Gnirke, A. M. Lindroth, R. Barres, J. Yan, S. Stromberg, S. De, F. Ponten, E. S. Lander, S. A. Carr, J. R. Zierath, K. Kullander, C. Wadelius, K. Lindblad-Toh, G. Andersson, G. Hjalm, and L. Andersson. 2009. ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLoS Biol. 7: e1000256. Marshall, T. C., J. Slate, L. E Kruuk, and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 8: 893-894. Mukesh, M., M. Sodhi, S. Bhatia, and B. P. Mishra. 2004. Genetic diversity of Indian native cattle breeds as analysed with 20 microsatellite loci. J. Anim. Breed. Genet. 121: 416-424. Nei, M. 1972. Genetic distance between populations. Am. Nat. 106: 283-292. Nei, M. 1987. Molecular evolutionary genetics. pp. 87-88. Columbia Univ. Press, NY, USA. O’Reilly, P., and J. M. Wright. 1995. The evolving technology fingerprinting and its application to fisheries and aquaculture. J. Fish Biol. 47: 29-55. Paetkau, D., and C. Strobeck. 1994. Microsatellite analysis of genetic variation in black bear population. Mol. Ecol. 3: 489-495. Park, S. D. E. 2001. Trypanotolerance in West African cattle and the population genetic effects of selection. Ph. D. Thesis. Trinity College, Univ. of Dublin, Ireland. Peakall, R., and P. E. Smouse. 2012. GeneAlEx ver6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics 28: 2537-2539. Peelman, L. J., F. Mortiaux, A. Van Zeveren, A. Dansercoer, G. Mommens, F. Coopman, Y. Bouquet, A. Burny, R. Renaville, and D. Portetelle. 1998. Evaluation of the genetic variability of 23 bovine microsatellite markers in four Belgian cattle breeds. Anim. Genet. 29: 161-167. Perry, R., and M. Rudnick. 2000. Molecular mechanisms regulating myogenic determination and differentiation. Front. Biosci. 5: 750-767. Pritchard, J. K., M. Stephen, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959. Robakowska-Hyzorek, D., J. Oprzadek, B. Zelazowska, R. Olbromski, and L. Zwierzchowski. 2010. Effect of the g.-723G-->T polymorphism in the bovine myogenic factor 5 (Myf5) gene promoter region on gene transcript level in the longissimus dorsi muscle and on meat traits of Polish Holstein-Friesian cattle. Biochem. Genet. 48: 450-464. Rozen, S., and H. J. Skaletsky. 2000. Primer 3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386. Rudnicki, M. A., T. Braun, S. Hinuma, and R. Jaenish. 1992. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf5 and results in apparently normal muscle development. Cell 71: 383-390. Rudnicki, M. A., P. N. J. Schnegelsberg, R. H. Stead, T. Braun, H. H. Arnold, and R. Jaenish. 1993. MyoD or Myf5 is required for the formation of skeletal muscle. Cell 75: 151-1359. Saitou, N., and M. Nei. 1987. The Neighbor-joining method: a method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. SAS Institute. 2009. SAS/STAT User’s guide, Release 9.2 ed. SAS Institute Inc., Cary, NC, USA. Schemske, D. W. 1984. Population structure and local selection in impatiens pallida (Balsaminaceae), a selfing annual. Evolution 38: 817-832. Seong, J., J. D. Oh, I. C. Cheong, K. W. Lee, H. K. Lee, D. S. Suh, G. J. Jeon, K. D. Park, and H. S. Kong. 2011. Association between polymorphisms of Myf5 and POU1F1 genes with growth and carcass traits in Hanwoo (Korean cattle). Genes Genomics 33: 425-430. Sia, E. A., S. Jinks-Robertson, and T. D. Petes. 1997. Genetic control of microsatellite stability. Mutat. Res. 383: 61-70. Sun, W., H. Chen, C. Lei, X. Lei, and Y. Zhang. 2007. Study on population genetic characteristics of Qinchuan cows using microsatellite markers. J. Genet. Genomics. 34: 17-25. Taylor, J. F., L. L. Coutinho, K. L. Herring, D. S. Jr. Gallagher, R. A. Brenneman, N. Burney, J. O. Sanders, J. W. Turner, S. B. Smith, R. K. Miller, J. W. Savell, and S. K. Davis. 1998. Candidate gene analysis of GH1 for effects on growth and carcass composition of cattle. Anim. Genet. 29: 194-201. Tu, P. A., D. Y. Lin, G. F. Li, J. C. Huang, D. C. Wang, and P. H. Wang. 2014. Characterization of the genetic diversity and population structure for the yellow cattle in Taiwan based on microsatellite markers. Anim. Biotechnol. 25: 234-249. Ujan, J. A., L. S. Zan, S. A. Ujan, and H. B. Wang. 2011. Association between polymorphism of MyF-5 gene with meat quality traits in indigenous Chinese cattle breeds. Pages 50-55 in IPCBEE. Vol. 13. International Conference on Asia Agriculture and Animal, IACSIT Press, Singapoore. VanRaden, P. M., K. M. Olson, D. J. Null, and J. L. Hutchison. 2011 Harmful recessive effects on fertility detected by absence of homozygous haplotypes. J. Dairy Sci. 94: 6153-6161. Waits, L. P., G. Luikart, and P. Taberlet. 2001. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol. Ecol. 10: 249-256. Weintraub, H., R. Davis, S. Tapscott, M. Thayer, M. Kransc, R. Benezra, T. K. Blackwell, D. Turner, R. Rupp, S. Hollenberg, Y. Zhuang, and A. Lassar. 1991. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251: 761-766. Wigginton, J. E., D. J. Culter, and G. R. Abecasis. 2005. A note on exact tests of Hardy-Weinberg Equilibrium. Am. J. Hum. Genet. 76: 887-893. Wright, S. 1951. The genetic structure of populations. Ann. Eugen. 15: 323-354. Wright, S. 1978. Evolution and the Genetics of Populations, Vol. 4, Variability within and among Natural Populations. pp. 60-89. Univ. Chicago Press, Chicago, USA. Young A. G., D. Boshier, and T. J. Boyle. 2000. Forest Conservation Genetics: Principles and Practice. CSIRO Publishing, Australia. Zhang, G. X., Z. G. Wang, W. S. Chen, C. X. Wu, X. Han, H. Chang, L. S. Zan, R. L. Li, J. H. Wang, W. T. Song, G. F. Xu, H. J. Yang, and Y. F. Luo. 2007a. Genetic diversity and population structure of indigenous yellow cattle breeds of China using 30 microsatellite markers. Anim. Genet. 38: 550-559. Zhang, R. F., H. Chen, C. Z. Lei, C. L. Zhang, X. Y. Lan, Y. D. Zhang, H. J. Zhang, B. Bao, H. Niu, and X. Z. Wang. 2007b. Association between polymorphisms of MSTN and MYF5 genes and growth traits in three Chinese cattle breeds. Asian‐Aust. J. Anim. Sci. 20: 1798-1804. Zhao, S. M., W. Z. Li, H. B. Pan, Y. Huang, M. H. Yang, H. J. Wei, and S. Z. Gao. 2012. Expression levels of candidate genes for intramuscular fat deposition in two Banna mini-pig inbred lines divergently selected for fatness traits. Genet. Mol. Biol. 35: 783-789. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4477 | - |
| dc.description.abstract | 近年來臺灣的國產牛肉市場越來越受到重視,其中臺灣黃牛為我國重要的本土肉牛品種,然而其族群數量卻急遽下降,為了維護臺灣黃牛之純種種源與遺傳歧異度,自 1987 年於農業委員會畜產試驗所恆春分所設立保種場。因此本試驗第一個目標為開發牛隻新微衛星標識(microsatellite markers),以分析臺灣黃牛與其他牛隻族群在遺傳結構上的差異。第二,利用單一核苷酸多態性(single nucleotide polymorphism, SNP)標識分析其與臺灣黃牛族群生長性狀之相關性,以利進行未來肉牛的選拔及育種。 本試驗採用選擇性雜合法(selective hybridization),將含有重複序列片段(repeat units)之探針(probes)與一公一母之雜交黃牛基因體 DNA 樣本進行雜合(hybridization),以建立微衛星標識豐富化之基因庫(microsatellite-enriched genomic library)。共開發 15 組新微衛星標識,於 8 個族群共 637 頭牛隻進行檢測,試驗結果顯示, 15 組新微衛星基因座之交替基因數(number of alleles, Na) 與有效交替基因數(number of effective alleles, Ne)之平均值各為 8.2±4.2 和 3.0±1.4;期望異質度(expected heterozygosity, HE)與觀測異質度(observed heterozygosity, HO)之平均值分別為 0.588±0.191 與 0.424±0.164;多態性訊息含量(polymorphic information content, PIC)之平均值為 0.552±0.188,且其中 10 組具有高度多態性(PIC ≥ 0.50)。另外,FIS 之平均值為 0.184,FIT 之平均值為 0.271,而 FST 之平均值為 0.108。全部新微衛星基因座之綜合個體鑑別率(probability of identity, P(ID))與綜合近親個體鑑別率(probability of identity among sibs, P(ID)sib)分別為 9.8×10-12 與 3.1×10-5。利用鄰位連接(neighbor-joining)法根據 8 個牛隻族群之遺傳距離所繪製的親緣關係樹中可觀察到,此 15 組新微衛星標識可明確的區分臺灣黃牛族群與其他牛隻族群。 在第二部分的試驗中,選擇MYF5 g.1948 A>G、ZBED6 g.680C>G 及 SREBP1 g.10781C>G 此三個基因變異位點,針對 168 頭臺灣黃牛進行生長性狀之相關性分析,所搜集之性狀資料有牛隻的出生重、4、6、8、10 及 12 月齡體重。試驗結果顯示,MYF5 基因型在牛隻的 12 月齡體重有趨勢上的影響 (P = 0.07), AG 或 GG 基因型的個體相較於 AA 基因型有較重的體重。而在 ZBED6 基因, CG 或 GG 基因型的牛隻相較於 CC 基因型有顯著較重的 10 月齡體重(P < 0.05)。牛隻 SREBP1 基因型則是與出生重有顯著相關(P < 0.05),雜合子個體相較於純合子個體有較重的出生體重。 綜合所述,本試驗所開發之 15 組牛隻新微衛星標識,可供進行國內臺灣黃牛及其他牛隻族群之族群遺傳結構檢測與個體鑑別及產銷履歷之驗證。此外,在本試驗中所使用的三個 SNP 位點有潛力作為肉牛選拔育種之分子標識。 牛短脊椎綜合症(brachyspina syndrome, BS)為一種隱性遺傳致死疾病,本症狀形成的原因為牛隻 FANCI 基因有 3.3 kb 片段的缺失。本試驗第三個目標為分析臺灣地區荷蘭牛、臺灣黃牛及臺灣水牛族群中帶有此症狀之雜合子個體頻率,結果顯示所檢測之臺灣黃牛及水牛族群皆為正常個體,而在 53 頭荷蘭牛隻中有 5 頭為雜合子,故有必要進行大規模之荷蘭牛族群篩檢,並以選擇性配種的方式,逐步篩除此不良基因。 | zh_TW |
| dc.description.abstract | In recent years, great importance of the domestic beef market has been attached. The Taiwan yellow cattle is an important indigenous beef cattle breed in Taiwan. However, the population size of the Taiwan yellow cattle has dropped dramatically. Therefore, to preserve germplasm resources and genetic diversity, the conservation population has been maintained in Hengchung Branch of Livestock Research Institute, C.O.A. since 1987. The first goal of this study was to develop novel microsatellite markers to clarify the difference of genetic structure between the Taiwan yellow cattle and hybrid cattle. Secondly, using single nucleotide polymorphism (SNP) markers in analyzing their association with growth traits in the Taiwan yellow cattle for future beef cattle selection and breeding. A microsatellite-enriched genomic library was constructed from one male and one female hybrid yellow cattle DNA samples using selective hybridization method with mixed probes containing different repeat units. There were 15 sets of novel microsatellite markers were developed and used to analyze 637 cattle sampled from eight populations. The average number of alleles (Na) and effective alleles (Ne) were 8.2±4.2 and 3.0±1.4, respectively. Among these markers, the average expected heterozygosity (HE) and observed heterozygosity (HO) were 0.588±0.191 and 0.424±0.164, respectively. The estimated average polymorphic information content (PIC) was 0.552±0.188, and 10 of these markers were highly polymorphic (PIC ≥ 0.50). The inbreeding coefficient in the subpopulation (FIS) was 0.184. The inbreeding coefficient in the total population (FIT) was 0.271. The average differentiation among populations (FST) was 0.108. The total probability of identity (P(ID)) and the total probability of identity among sibs (P(ID)sib) were 9.8×10-12 and 3.1×10-5, respectively. The neighbor-joining (NJ) trees were constructed among the eight populations on the basis of the genetic distance estimated from the 15 sets of novel microsatellite markers. The results indicated that Taiwan yellow cattle populations could be successfully separated from other cattle populations by using these markers. In the second part of this study, three SNP markers: MYF5 g.1948 A>G, ZBED6 g.680C>G, and SREBP1 g.10781C>G, were selected to examine their association with growth traits in 168 Taiwan yellow cattle. The traits studied were the body weight (BW) at birth, 4, 6, 8, 10, and 12 months. Association of MYF5 genotypes with BW12 were nearly significant (P = 0.07), with the genotype AG or GG might have heavier body weight than genotype AA. Individuals with the genotype CG or GG of ZBED6 gene showed significantly heavier BW10 than genotype CC (P < 0.05). Association of SREBP1 genotypes with BW0 were significant (P < 0.05), with the heterozygous genotype have heavier birth weight than homozygous genotypes. In conclusion, these 15 sets of novel microsatellite markers developed in this study could be applied for monitoring genetic background structure of Taiwan yellow cattle and other cattle populations. Additionally, these three characterized SNPs could be used as potential markers for selection and breeding of beef cattle. Bovine brachyspina syndrome (BS) is a recessive genetic defect, caused by a 3.3 kb DNA deletion in the bovine FANCI gene. The third part of this study was to analyze the frequency of BS carrier in Taiwan Holstein, Taiwan yellow cattle and Taiwan water buffalo population. The result indicated that all of the Taiwan yellow cattle and water buffalo were normal individuals, and 5 of 53 Holstein cattle were BS carriers. This genetic defect should be eliminated gradually by large-scale genotyping and selective mating. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:42:32Z (GMT). No. of bitstreams: 1 ntu-104-R02626019-1.pdf: 4886377 bytes, checksum: 0ee6a391974194977562b6d5c364a2fb (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄 I 圖次 III 表次 IV 附圖次 V 附表次 VI 中文摘要 1 Abstract 3 壹、前言 5 貳、文獻探討 6 一、臺灣肉牛產業發展概況 6 二、臺灣本地牛隻品種介紹 10 三、DNA 分子標識 15 四、族群遺傳多態性 20 五、微衛星標識在牛隻之研究 30 六、牛隻生長性狀相關候選基因之研究 36 七、牛短脊椎綜合症之研究 42 八、試驗目的 43 參、材料與方法 44 試驗一:牛隻新微衛星標識之開發與應用 44 一、新微衛星標識之開發 44 二、微衛星標識之PCR增幅與多態性檢測 50 三、遺傳分析 56 試驗二:利用候選基因法於臺灣黃牛生長性狀相關性之探討 57 一、試驗動物及資料收集 57 二、候選基因多態性分析 57 三、統計分析 63 試驗三:牛隻短脊椎綜合症基因頻率分析 64 一、試驗動物 64 二、基因型分析 64 肆、結果 65 試驗一:牛隻新微衛星標識之開發與應用 65 一、新微衛星基因座之遺傳變異分析 65 二、各族群牛隻之遺傳變異分析 71 三、族群分化與分子變方分析 73 四、遺傳距離與分群 76 五、牛隻個體鑑別率之估算 83 試驗二:利用候選基因法於臺灣黃牛生長性狀相關性之探討 86 一、MYF5 基因於臺灣黃牛之多態性分析 86 二、MYF5 基因多態性與臺灣黃牛生長性狀相關性分析 90 三、ZBED6 基因於臺灣黃牛之多態性分析 91 四、ZBED6 基因多態性與臺灣黃牛生長性狀相關性分析 96 五、SREBP1c 基因於臺灣黃牛之多態性分析 97 六、SREBP1c 基因多態性與臺灣黃牛生長性狀相關性分析 100 試驗三:牛短脊椎綜合症基因頻率分析 101 一、短脊椎綜合症之 FANCI 基因型檢測 101 二、短脊椎綜合症之 FANCI 基因型頻率分布 101 伍、討論 104 試驗一:牛隻新微衛星標識之開發與應用 104 一、新微衛星基因座之遺傳變異分析 104 二、各族群牛隻之遺傳變異分析 106 三、族群分化、遺傳距離與分群 107 四、牛隻個體鑑別率 109 試驗二:利用候選基因法於臺灣黃牛生長性狀相關性之探討 110 一、MYF5 基因多態性與臺灣黃牛生長性狀相關性分析 110 二、ZBED6 基因多態性與臺灣黃牛生長性狀相關性分析 111 三、SREBP1c 基因多態性與臺灣黃牛生長性狀相關性分析 112 試驗三:牛短脊椎綜合症基因頻率分析 114 陸、結論 115 柒、參考文獻 116 捌、附錄 129 | |
| dc.language.iso | zh-TW | |
| dc.subject | 臺灣黃牛 | zh_TW |
| dc.subject | 短脊椎綜合症 | zh_TW |
| dc.subject | 生長性狀 | zh_TW |
| dc.subject | 微衛星標識 | zh_TW |
| dc.subject | 族群遺傳結構 | zh_TW |
| dc.subject | Microsatellite marker | en |
| dc.subject | Taiwan yellow cattle | en |
| dc.subject | Population genetic structure | en |
| dc.subject | Brachyspina syndrome | en |
| dc.subject | Growth trait | en |
| dc.title | 利用 DNA 分子標識進行臺灣黃牛族群遺傳結構分析與生長性狀相關性之探討 | zh_TW |
| dc.title | Population genetic structure analysis and growth trait association using DNA genetic markers for Taiwan yellow cattle | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宋永義,蕭振文,黃政齊 | |
| dc.subject.keyword | 短脊椎綜合症,生長性狀,微衛星標識,族群遺傳結構,臺灣黃牛, | zh_TW |
| dc.subject.keyword | Brachyspina syndrome,Growth trait,Microsatellite marker,Population genetic structure,Taiwan yellow cattle, | en |
| dc.relation.page | 140 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 4.77 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
