Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44755
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭本垣
dc.contributor.authorYen-Ting Koen
dc.contributor.author柯彥廷zh_TW
dc.date.accessioned2021-06-15T03:54:14Z-
dc.date.available2010-07-16
dc.date.copyright2010-07-16
dc.date.issued2010
dc.date.submitted2010-06-29
dc.identifier.citationAki, K., Scaling law of seismic spectrum, J. Geophys. Res., 72, 1217–1231(1967).
Aki, K., and Richards, P. G., Quantitative Seismology, Theory and Methods, W. H. Freeman, San Francisco, Calif. Anderson, D. L. (1989), Theory of the Earth, 366 pp., Blackwell Sci., Boston, Mass (1980).
Anderson, J. G., and Hough, S. E., A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies, Bull. Seismol. Soc. Am., 74, 1969– 1993 (1984).
Anderson, J. G., Implication of attenuation for studies of earthquake sources, in Earthquake Source Mechanics, Geophys. Monogr. Ser., vol. 37, edited by S. Das, J. Boatwright, and C. H. Scholz, pp. 311–318 (1986).
Billien, M., Leveque, J.-J. and Trampert, J., Global maps of Rayleigh wave attenuation for periods between 40 and 150 seconds, Geophys. Res. Lett., 27, 3619– 3622 (2000).
Blakely, Richard J., Brocher, Thomas M. and Wells, Ray E., Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology 2005;33;445-448 (2005).
Bostock, M. G., Hyndman, R. D., Rondenay, S. and Peacock, S. M., An inverted continental Moho and serpentinization of the forearc mantle, Nature, 417, 536– 538, doi:10.1038/417536a (2002).
Brune, J. N., Correction, J. Geophys. Res., 76, 5002 (1971).
Brune, J. N., Tectonic stress and the spectra of seismic shear waves from earthquake, J. Geophys. Res., 75, 4997–5009 (1970).
Cagnioncle, A.-M., Parmentier, E. M. and Elkins-Tanton, L. T., Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries, J. Geophys. Res., 112, B09402, doi:10.1029/2007JB004934(2007).
Cerny,V., A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications, 45:41-51 (1985).
Chang, C. P., Angelier, J., Huang, C. Y. and Liu, C. S., Structural evolution and significance of a melange in a collision belt: the Lichi Melange and the Taiwan arc–continent collision. Geol. Mag. 138 (6), pp. 633–651 (2001).
Chen, T., and Clayton, R. W., Seismic attenuation structure in central Mexico: Image of a focused high-attenuation zone in the mantle wedge, J. Geophys. Res., 114, B07304, doi:10.1029/2008JB005964 (2009).
Chiao, L. Y. and Kuo, B. Y., Multiscale seismic tomography, Geophys. J. Int., 145, 517-527 (2001).
Chou, H.-C., Kuo, B.-Y., Chiao, L.-Y., Zhao, D. and Hung, S.-H., Tomography of the westernmost Ryukyusubduction zone and the serpentinization of the fore-arc mantle, J. Geophys. Res., 114, B12301, doi:10.1029/2008JB006192 (2009).
Chu, C. H., Generation of high-Mg andesites in the Kueishantao volcano, the southernmost part of the Okinawa Trough (in Chinese), Master’s thesis, 99 pp., Natl. Taiwan Univ., Taipei (2005).
Chung, S. L., Wang, S. L., Shinjo, R., Lee, C. S. and Chen, C. H., Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa trough, Terra Nova, 12, 225 – 230, doi:10.1046/j.1365-3121.2000.00298.x (2000).
Dalton, C.A., Ekstrom, G., Dziewonski, A.M., Global seismological shear velocity and attenuation: A comparison with experimental observations. Earth Planet. Sci. Lett. 284:65–75 (2009).
Dalton, C.A., Ekstrom, G., Dziewonski, A.M., The global attenuation structure of the upper mantle. J. Geophys. Res. 113. doi:10.1029/2007JB005429 (2008).
Dalton, C.A., Ekstrom, G., Global models of surface-wave attenuation. J. Geophys. Res. 111. doi:10.1029/2005JB003997 (2006).
DeShon, H. R. and Schwartz, S. Y., Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica, Geophys. Res. Lett., 31, L21611, doi:10.1029/2004GL021179 (2004).
Dziewonski, A.M. and Anderson, D.L., Preliminary reference Earth model. Phys. Earth Planet. Inter., 25:297-356 (1981).
Faul, U.H. and Jackson, I., The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett., 234, 119-134 (2005).
Forte, Alessandro M. and Claire Perry, H. K., Geodynamic Evidence for a Chemically Depleted Continental Tectosphere, Science 290, 1940, doi:10.1126/science.290.5498.1940 (2000).
Fryer, P., Mottl, M., Johnson, L., Haggerty, J., Phipps, S. and Maekawa, H., Serpentine bodies in the forearcs of western Pacificc onvergentm argins:O rigin and associatedfl uids,i n Active Marginsa nd Marginal Basinso f the WesternP acific, GeophysM. onogr. Ser., vol. 88, edited by B. Taylor and J. Natland, pp. 259-279, AGU, Washington, D.C. (1995).
Furukawa, Y., Depth of the Decoupling Plate Interface and Thermal Structure Under Arcs, J. Geophys. Res., 98(B11), 20005-20013 (1993).
Gung, Y., Hsu, Y.-T., Chiao, L.-Y. and Obayashi, M., Multiscale waveform tomography with two-step model parameterization,J. Geophys. Res.,114, B11301, doi:10.1029/2008JB006275 (2009).
Gung, Y.C., Romanowicz, B., Q tomography of the upper mantle using threecomponent long-period waveforms. Geophys. J. Int. 157, 813–830 (2004).
Hacker, B. R., Abers, G. A. and Peacock, S. M., Subduction factory, 1, Theoretical mineralogy, densities, seismic wavespeeds, and H2O contents, J. Geophys. Res., 108(B1), 2029, doi:10.1029/2001JB001127 (2003).
Hanks, T., and Kanamori, H., A moment magnitude scale: J. Geophys. Res., v. 84, no. B5, p. 2348-2350 (1979).
Hiramatsu,Y., Yamanaka, H., Tadokoro, K., Nishigami, K. and Ohmi, S., Scaling law between corner frequency and seismic moment of microearthquakes: Is the breakdown of the cube law a nature of earthquakes? Geophys. Res. Lett., vol. 29, no. 8, 1211, 10.1029/2001gl013894 (2002).
Hirschmann, Marc M., Aubaud, Cyril, Withers, Anthony C., Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett. 236: 167-81 (2005).
Hirth, G., Kohlstedt, D.L., Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett 144: 93– 108 (1996).
Hou, C. S., Hu, J. C., Ching, K. E., Chen, Y. G., Chen, C. L., Cheng, L. W., Tang, C. L., Huang, S. H. & Lo, C. H. The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough, Tectonophysics, 466, 344-355 (2009).
Hung, S.‐H., Chen, W.‐P., Chiao, L.‐Y. and Tseng, T.‐L., First multi‐scale, finite‐frequency tomography illuminates 3‐D anatomy of the Tibetan Plateau, Geophys. Res. Lett., 37, L06304, doi:10.1029/2009GL041875 (2010).
Hung, S.-H., Shen, Y. and Chiao, L.-Y., Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach, J. Geophys. Res., 109, B08305, doi:10.1029/2003JB002889 (2004).
Hyndman, Roy D., Peacock, Simon M., Serpentinization of the forearc mantle. Earth Planet. Sci. Lett 212: 417– 32 (2003).
Iio, Y., Scaling relation between earthquake size and duration of faulting for shallow earthquakes in seismic moment between 1010 and 1025 dyne/cm, J. Phys. Earth, 34, 127– 169 (1986).
Jackson, I., FitzGerald, J. D., Faul, U. H. and Tan, B. H., Grain-sizesensitive seismic wave attenuation in polycrystalline olivine, J. Geophys. Res., 107(B12), 2360, doi:10.1029/2001JB001225 (2002).
Jackson, I., Laboratory Measurements of Seismic Wave dispersion and Attenuation: Recent Progress. In Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, AGU Geophysicsl Monograph Service, vol.117, S. Karato et al (eds), pp265-289 (2000).
Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., 'Optimization by Simulated Annealing'. Science. New Series 220 (4598): 671–680. doi:10.1126/science.220.4598.671 (1983).
Lay, T., and Wallace, T. C., Modern Global Seismology, Academic Press, San Diego, 521pp (1995).
Leat, P. T., Pearce, J. A., Barker, P. F., Millar, I. L., Barry, T. L. & Larter, R. D. Magma genesis and mantle flow at a subducting slab edge: the South Sandwich arc-basin system, Earth Planet. Sci. Lett., 227, 17-35, doi:10.1016/j.epsl.2004.08.016 (2004).
Lin, C. R., Kuo, B. Y., Liang, W. T., Chi, W. C., Huang, Y. C., Collins, J. & Wang, C. Ambient noise and teleseismic signals recorded by ocean-bottom seismometers offshore eastern Taiwan, Terr. Atmos. Ocean. Sci., 21, XXX-XX, doi:10.3319/TAO2009.09.14.01(T).
Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J., Song, Y.-F., Yeh, E.-C., Sone, H., Kuo, L.-W. and Wu, H.-Y., Slip Zone and Energetics of a Large Earthquake from the Taiwan Chelungpu-fault Drilling Project, Nature, 444, doi:10.1038/nature05253 (2006).
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., 'Equations of State Calculations by Fast Computing Machines'. Journal of Chemical Physics, 21(6):1087-1092 (1953).
Nelder, J.A., and Mead, R., Computer Journal, vol. 7, pp. 308–313 (1965).
Nolet, G., A BREVIARY OF SEISMIC TOMOGRAPHY:Imaging the Interior of the Earth and Sun, Cambridge University Press, 339pp (2008).
Peyton, V., Levin, V., Park, J., Brandon, M., Lees, J., Gordeev, E., Ozerov, A., Mantle Flow at a Slab Edge: Seismic Anisotropy in the Kamchatka Region. Geophys. Res. Lett., VOL. 28, NO. 2, PAGES 379-382 (2001).
Pozgay, S. H., Wiens, D. A., Conder, J. A., Shiobara, H. and Sugioka, H., Seismic attenuation tomography of the Mariana subduction system: Implications for thermal structure, volatile distribution, and slow spreading dynamics, Geochem. Geophys. Geosyst., 10, Q04X05, doi:10.1029/2008GC002313 (2009).
Ritsema, J. and van Heijst, H. J., Seismic imaging of structural heterogeneity in Earth's mantle: Evidence for large-scale mantle flow, Sci. Progr., 83, 243-259 (2000).
Romanowicz, B., Global mantle tomography: progress status in the past 10 years, Annu. Rev. Earth Planet Sci. 31, pp. 303–328 (2003).
Roth, E. G., Wiens, D. A., Dorman, L. M., Hildebrand, J. and Webb, S. C., Seismic attenuation tomography of the Tonga-Fiji region using phase pair methods, J. Geophys. Res., 104(B3), 4795–4809, doi:10.1029/1998JB900052 (1999).
Rupke, Lars H., Phipps Morgan, J., Hort, M., Connolly, James A.D., Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223: 17-34 (2004).
Rychert, C. A., Fischer, K. M., Abers, G. A., Plank, T., Syracuse, E., Protti, J. M., Gonzalez, V. and Strauch, W., Strong along-arc variations in attenuation in the mantle wedge beneath Costa Rica and Nicaragua, Geochem. Geophys. Geosyst., 9, Q10S10, doi:10.1029/2008GC002040 (2008).
Schurr, B., Asch, G., Rietbrock, A., Trumbull, R., Haberland, C., Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth Planet. Sci. Lett. 215:105–19 (2003).
Selby, N.D., Woodhouse, J.H., The Q structure of the upper mantle: constraints from Rayleigh wave amplitudes. J. Geophys. Res. 107. doi:10.1029/2001JB000257 (2002)
Shapiro, N. M., Campillo, M., Stehly, L. and Ritzwoller, M. H., High resolution surface wave tomography from ambient seismic noise, Science, 307,1645-1618 (2005).
Shinjo, R., Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough-Ryukyu arc system, Chem. Geol., 157, 69– 88, doi:10.1016/S0009-2541(98)00199-5 (1999).
Stachnik, Joshua C., Abers, Geoffrey A., Chistensen, Douglas H., Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone. J. Geophys. Res. 109:B10304 (2004).
Takanami, T., Sacks, I. S. and Hasegawa, A., Attenuation structure beneath the volcanic front in northeastern Japan from broad-band seismograms, Phys. Earth Planet Inter., 121(3–4), 339–357, doi:10.1016/S0031-9201(00)00169-2 (2000).
Tatsumi, Y., and Eggins, S., Subduction Zone Magmatism, 211 pp., Blackwell, Cambridge, U. K (1995).
Tsumura, N., Matsumoto, S., Horiuchi, S., Hasegawa, A., Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes. Tectonophysics 319:241–60 (2000).
Von Rebeur-Paschwitz, E., The Earthquake of Tokio, April 18, 1889, Nature, 40, 294-295 (1889).
Wiens, D. A., Conder, J. A. and Faul, U. H., The seismic structure and dynamics of the mantle wedge, Annu. Rev. Earth Planet. Sci., 36, 421 –455, doi:10.1146/annurev. earth.33.092203.122633 (2008).
Yogodzinski, G. M., Lees, J. M., Churikova, T. G., Dorendorf, F., Woerner, G. & Volynets, O. N. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges, Nature 409, 500-504 (2001).
Yu, S. B., Chen, H. Y. & Kuo, L. C., Velocity field of GPS stations in Taiwan area. Tectonophysics 274, 41–59 (1997).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44755-
dc.description.abstract地震波對於探究地幔動力學與地球內部構造無非是最佳的分析利器。無論分析波速之快慢或是能量之衰減,皆可有效地勾勒出隱藏在地底深處的構造形貌。相較於震波速度,震波之能量衰減分析,更能夠清楚的反應溫度及含水量的變化。地震波之振幅頻譜主要由震源與波傳介質所共同影響,因此如何區分兩者對於震波能量之影響是一極具挑戰的任務。在本研究中,我們首先發展一套全新的分析方法來有效分離震源與路徑的效應,其核心概念是假設相鄰地震傳至同一測站可分享相同的Q值,且一個地震只能擁有一個拐角頻率(fc),如此建構之多重震源-測站組合能”堅固的”限制共同路徑之Q值與不同地震各自擁有的fc。我們運用模擬退火進行非線性逆推,由觀測資料同時決定路徑與震源效應。結果顯示,fc與Mw呈現清晰的逆相關趨勢,更鞏固逆推架構與結果之可信度。
我們發現處於弧後擴張的沖繩海槽之下的地幔楔中,Q值僅有60左右。在東經122°以東附近Q值大約200-300,以西卻驟增至800以上,我們追朔兩種主要因素,溫度和水含量。若單就溫度的差異,弧後張裂向西減弱能貢獻約200-250℃的溫度差,與歐亞岩石圈接觸的熱傳效應估計應該很小,但菲律賓海板塊隱沒速率受到歐亞板塊阻擋而減緩,造成地幔迴流也隨之減慢所產生的溫度差大約有50℃,250-300℃左右的冷卻效應依然無法解釋Q值變化。本論文提議在北台灣下方,在PSP隱沒速率減慢的同時,可能伴隨板塊脫水速率下降,使地幔楔水含量變少。減少10倍水含量,加上250-300℃的冷卻足以解釋觀測的衰減變化。綜觀而言,台灣北部急遽之Q值變化可歸因於隱沒板塊接近台灣陸地時,被較厚且冷的歐亞板塊阻擋,造成隱沒速率減緩,弧後擴張停滯,導致溫度變冷及隱沒板塊脫水速率降低,進而使水含量減少所共同造成的結果。本論文提出的溫度-水的模型,綜合了區域構造、地幔動力與地震上的現有知識。此模型也未沖繩海槽的發展提供一個基礎架構。
zh_TW
dc.description.abstractSeismic imaging of wave speed and attenuation is one of the most effective probes to reveal the structures of and the geodynamic processes in the earth’s interior. Physical parameters like velocity and attenuation complement each other in interpreting mantle properties, with the latter sensitive to temperature and water content most and insensitive to compositions and errors in event times. However, both the source spectrum and the attenuation of the medium dictate waveforms. The challenge facing us is to isolate the influence of corner frequency fc from the determination of t* or Q. In this study, we present a new method, the cluster event method (CEM), to determine both fc and Q in a robust way and apply it to depict the Q variations in the mantle wedge along the axis of the westernmost Okinawa trough (OT). The CEM features sharing of Q among neighboring paths and allowing single fc for each event, yielding a formulation solved best with the optimization algorithm of simulated annealing.
The two ocean-bottom seismometers deployed in the OT joined the BATS in northern Taiwan to form 3 profile groups that facilitates an observation of how the mantle wedge changes as approaching the edge of the subduction zone. Our results reveal a dramatic increase in Q value, from 60 beneath the moderately rifting OT to about 1000 beneath northeast Taiwan where the backarc rifting is incipient. A quantitative estimation indicates that ~400 C cooling is required to explain the increase. Several mutually-interrelated causes are pursued, and the most significant contributors is the 200-250 C cooling due to the weakening of the OT toward Taiwan. Other thermal factors are derived from the contact between the Eurasian lithosphere and the slab and may contribute only 50 C. The total thermal effect amounts to 250-300 C.
In this thesis we propose that water plays an important role to raise the Q value. The retarded subduction by the resistance along the Eurasia-slab boundary cuts short the water supply from the slab, decreasing the amount of water in the mantle wedge. A factor of 10 depletion of water in the mantle wedge can fill the 100-150 C deficit left from the inferred thermal budget alone. The temperature-water scenario integrates regional tectonics, mantle dynamics, and seismology into a self-consistent working model that not only sheds light on the evolution of the OT but also helps direct new research effort to a global characterization of the plate edge dynamics.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:54:14Z (GMT). No. of bitstreams: 1
ntu-99-R97224203-1.pdf: 14186411 bytes, checksum: 5d2599c70c51961a8a1bf68211516181 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………i
謝誌……………………………………………………………………………………...ii
英文摘要………………………………………………………………………………..iii
中文摘要…………………………………………………………………………….......v
目錄……………………………………………………………………………………..vi
圖目錄………………………………………………………………………………….vii
表目錄…………………………………………………………………………………viii
第一章 緒論………………………………………………………………..……….. 01
1.1 引言…………….…………….…………………………………………….....01
1.2 隱沒帶概述………….……………………….……………………………….03
1.3 隱沒帶衰減構造…………...……………………….………………………...05
第二章 震波能量衰減與本質衰減Q…………………………………………………07
第三章 研究區域與資料簡述………………………………………………………...13
3.1 研究區域地體構造…………………………………………………………..13
3.2 資料…………………………………………………….…………………..…14
第四章 研究方法……………………………………………………………………...18
4.1地震波震幅頻譜…………………………………………………………….18
4.2資料處理與傳統分析方法………………………………………………….23
4.3線性逆推拐角頻率………………………………………………………….25
4.4 雙站法……………………………………………………………………....28
4.5群組地震分析法………………………………………………………….....31
4.5.1 模擬退火………………………………………………………………32
4.5.2 模擬測試………………………………………………………………33
第五章 結果與討論…………………………………………………………………...40
第六章 結論…………………………………………………………………………...52
參考文獻…………………………………………………………………………………….53
附錄……………………………………………………………………………….60
dc.language.isozh-TW
dc.subject板塊邊緣zh_TW
dc.subject震波能量衰減zh_TW
dc.subject地幔楔zh_TW
dc.subject沖繩海槽zh_TW
dc.subject水含量zh_TW
dc.subjectplate edgeen
dc.subjectseismic attenuationen
dc.subjectmantle wedgeen
dc.subjectOkinawa troughen
dc.subjectwater contenten
dc.title沖繩海槽與北台灣的地幔楔衰減特性及其與歐亞岩石圈之關係zh_TW
dc.titleVariation of Attenuation along the SW Okinawa Trough: Effect of the Eurasian Lithosphereen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor洪淑蕙
dc.contributor.oralexamcommittee喬凌雲,龔源成,馬國鳳
dc.subject.keyword震波能量衰減,地幔楔,沖繩海槽,水含量,板塊邊緣,zh_TW
dc.subject.keywordseismic attenuation,mantle wedge,Okinawa trough,water content,plate edge,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2010-06-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
13.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved