Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44750
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾雪峰(Snow H. Tseng)
dc.contributor.authorMing-Yu Yehen
dc.contributor.author葉明瑜zh_TW
dc.date.accessioned2021-06-15T03:54:07Z-
dc.date.available2010-07-02
dc.date.copyright2010-07-02
dc.date.issued2010
dc.date.submitted2010-06-30
dc.identifier.citation[1] H. Eichler and O. Mehl, “Phase conjugate mirrors,” Journal of Nonlinear Optical Physics andMaterials, vol. 10, pp. 43–52, 2001.
[2] J. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE Journal of selected topics in quantum electronics, vol. 5, no. 4, pp. 1205–1215, 1999.
[3] M. Fink, “Time reversal of ultrasonic fields—Part I: Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 39, no. 5, pp. 555–566, 1992.
[4] P. Kosmas and C. Rappaport, “Use of the FDTD method for time reversal: Application to microwave breast cancer detection,” in Proceedings of SPIE, vol. 5299, p. 1, 2004.
[5] S. Yang, “2-D PSTD Simulation of optical phase conjugation for turbidity suppression,”Opt. Express, vol. 15, pp. 16005–16016, 2007.
[6] S. Arridge, “Optical tomography in medical imaging,” Inverse problems, vol. 15, pp. R41–R93, 1999.
[7] M. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express, vol. 18, pp. 3444–3455, 2010.
[8] U. Efron, Spatial light modulator technology: materials, devices, and applications. CRC, 1995.
[9] A. Taflove, S. Hagness, et al., Computational electrodynamics: the finite-difference time-domain method. Artech House Norwood, MA, 3 ed., 2005.
[10] O. Zienkiewicz, R. Taylor, and R. Taylor, The finite element method for solid and structural mechanics. Butterworth-Heinemann, 2005.
[11] J. Feinberg and R. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Optics Letters, vol. 5, no. 12, p. 519, 1980.
[12] S. Weiss, S. Sternklar, and B. Fischer, “Double phase-conjugate mirror: analysis, demonstration, and applications,” Optics letters, vol. 12, no. 2, pp. 114–116, 1987.
[13] I. Vellekoop and A.Mosk, “Focusing coherent light through opaque strongly scattering media,” Optics letters, vol. 32, no. 16, pp. 2309–2311, 2007.
[14] M. Cui, E. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express, vol. 18, pp. 25–30, 2010.
[15] K. Yee, “Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302–307, 1966.
[16] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Transactions on Electromagnetic Compatibility, pp. 377–382, 1981.
[17] Z. Liao, H. Wong, B. Yang, and Y. Yuan, “A transmitting boundary for transient wave analysis,” Sci. Sin, vol. 27, no. 10, pp. 1063–1076, 1984.
[18] J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, vol. 114, no. 2, pp. 185–200, 1994.
[19] K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE transactions on electromagnetic compatibility, pp . 397–405, 1982.
[20] A. Taflove and K. Umashankar, “Radar cross section of general three-dimensional scatterers,” IEEE Transactions on electromagnetic compatibility, pp. 433–440, 1983.
[21] G.Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys, vol. 25, no. 3, pp. 377–445, 1908.
[22] W. Sun, G. Loeb, et al., “Light scattering by coated sphere immersed in absorbing medium: a comparison between the FDTD and analytic solutions,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 83, no. 3-4, pp. 483–492, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44750-
dc.description.abstract當光穿過紊亂介質,與介質接觸時,產生的繞射與散射將嚴重影響觀測的影像,但若利用非線性光學中的相位共軛特性: 當光的相位改變,與原入射波為共軛之關係,光將自行回溯至波源。數位光學共軛鏡(Digital Optical Phase Conjugation)結合了電光調製器(Electro Optical modulator)及空間光調製器(Spatial light modulator),經由此儀器我們可以成功的產生相位共軛的光波,藉以達到光學回溯的效果。
本論文使用有限時域差分法(Finite-Difference Time-Domain technique), 並搭配此方法的額外技術, 針對數位光學相位共軛鏡進行一連串數值模擬與研究。我們在空間中擺放物質, 觀測電磁波經光學相位共軛鏡讀取資訊後之光回溯場型, 並更改模擬區域的寬度, 觀察光學相位共軛鏡與入射波在入射波波源處的能量場型, 企圖藉由此類數值模擬來了解數位光學相位共軛鏡之基本性質。此外, 我們更改變數位光學相位共軛鏡接收向前傳播散射波(Forward scattering wave) 之頻率以及共軛鏡的解析度, 試圖找出最有效率的組合, 並進一步利用此一組合, 模擬數位光學共軛鏡在穿透不同濃度的紊亂介質(turbid medium)時之光學回溯效果。
zh_TW
dc.description.abstractDue to the complex structure of biological tissues, wave propagateing through turbid medium generates interference and diffraction, generally the image is scattered and blurred. However, in nonlinear optics, with the technique of optical phase conjugation (OPC), for wave propagating through OPC, the wave refocuses to initial emanating point. Digital optical phase conjugation (DOPC) combines electro optical modulator (EOM) and spatial light modulator (SLM), which records forward scattering wave information and digitally reverses the phase information.
In this thesis, we apply the Finite-Difference Time-Domain (FDTD) technique, with additional techniques, to simulate DOPC refocusing phenomenon. Not only we simulate the basic property of DOPC, like placing an object in the simulation area to observe DOPC refocusing phenomenon, altering the width of simulation area to compare the profile of DOPC wave and the profile of incident wave; we also alter the DOPC recording time interval and spatial resolution to find the most efficient wave for DOPC refocusing. Moreover, we make use of these results to simulate DOPC refocusing through turbid medium.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:54:07Z (GMT). No. of bitstreams: 1
ntu-99-R96941071-1.pdf: 34524593 bytes, checksum: 5c227da636fb87805b1d340d55a9feed (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents1 Preface 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Background and Literature Review . . . . . . 2
2 Theory 5
2.1 Optical Phase Conjugation (OPC). . . . . . . . . . . . 5
2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Reciprocity theorem and scattering matrix . . . . . 8
2.2 Digital Optical Phase Conjugation (DOPC) . . . . . . 13
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . 13
2.2.2 Poisson summation formula . . . . . . . . . . . . . 14
3 Finite-Difference Time-DomainMethod 18
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 Maxwell equations . . . . . . . . . . . . . . . . . 19
3.1.2 Yee algorithm and Taylor expansion . . . . . . . . 22
3.2 Special technique in FDTD method . . . . . . . . . . 26
3.2.1 PerfectlyMatched Layer Absorbing Boundary Condition 26
3.2.2 Total-Field/ Scattered-Field (TF/ SF) technique . . 31
3.2.3 Near-to-Far-Field transformation (NTFF) technique . 34
4 DOPC simulation analyses 40
4.1 DOPC simulation—DOPC property analysis . . . . . . . 40
4.1.1 DOPC refocusing of a plane wave . . . . . . . . . . 41
4.1.2 DOPC refocusing of a diffracted wave . . . . . . . 44
4.1.3 Explanation of DOPC wave refocusing through narrow simulation width . . . . . . . . . . . . . . . . . . . . 48
4.2 Analysis of DOPC optimal selection . . . . . . . . . 52
4.2.1 Analysis of DOPC recording time interval . . . . . 52
4.2.2 Analysis of DOPC refocusing ability in various resolutions . . . . . . 56
4.3 Analysis of DOPC refocusing through turbid medium . . 58
4.3.1 DOPC refocusing through various number of scatterers . . . . . . . . 59
4.3.2 DOPC refocusing via different level precision . . . 64
5 Conclusion and future prospect 67
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . 67
5.2 Future prospect . . . . . . . . . . . . . . . . . . . 69
Reference . . . . . . . . . . . . . . . . . . . . . . . . 71
dc.language.isoen
dc.subject紊亂介質zh_TW
dc.subject有限時域差分法zh_TW
dc.subject數位光學相位共軛鏡zh_TW
dc.subjectTurbid Mediumen
dc.subjectDigital Optical Phase Conjugation (DOPC)en
dc.subjectFinite-Different Time-Domain Method (FDTD)en
dc.title以有限時域差分法模擬分析數位光學相位共軛現象zh_TW
dc.titleAnalysis of Digital Optical Phase Conjugation by
Using Finite-Difference Time-Domain Method
en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張宏鈞(Hung-Chun Chang),張世慧(S. H. Chang)
dc.subject.keyword有限時域差分法,數位光學相位共軛鏡,紊亂介質,zh_TW
dc.subject.keywordFinite-Different Time-Domain Method (FDTD),Digital Optical Phase Conjugation (DOPC),Turbid Medium,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2010-06-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
33.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved