Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44749
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭永銘
dc.contributor.authorYun-Chu Wangen
dc.contributor.author王韻筑zh_TW
dc.date.accessioned2021-06-15T03:54:06Z-
dc.date.available2010-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-06-29
dc.identifier.citation1. El-Serag H & Rudolph K (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557-2576.
2. Parkin DM, Bray F, Ferlay J, & Pisani P (2005) Global Cancer Statistics, 2002. CA Cancer J Clin 55(2):74-108.
3. Perz JF, Armstrong GL, Farrington LA, Hutin YJ, & Bell BP (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45(4):529-538.
4. Stevens CE, Beasley RP, Tsui J, & Lee WC (1975) Vertical transmission of hepatitis B antigen in Taiwan. N Engl J Med 292(15):771-774.
5. Amin J DG, O'Connell DL, Bartlett M, Tracey E, Kaldor JM, & Law MG. (2006) Cancer incidence in people with hepatitis B or C infection: a large community-based linkage study. J Hepatol. 45(2):197-203.
6. Ross RK, Ross RK, Yuan JM, Yu MC, Wogan GN, Qian GS, Tu JT, Groopman JD, Gao YT, & Henderson BE (1992) Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. Lancet 339(8799):943-946.
7. Henry SH BF & Bowers JC (2002) Aflatoxin, hepatitis and worldwide liver cancer risks. Adv Exp Med Biol. 504:229-233.
8. Mariana C. Stern DMU, Mimi C. Yu, Stephanie J. London, Zhen-Quan Zhang & Jack A. Taylor (2001) Hepatitis B, Aflatoxin B1, and p53 Codon 249 Mutation in Hepatocellular Carcinomas from Guangxi, People’s Republic of China, and a Meta-analysis of Existing Studies. Cancer Epidemiology, Biomarkers & Prevention 10(6):617-625.
9. Gerbes AL, & Caselmann WH (1993) Point mutations of the P53 gene, human hepatocellular carcinoma and aflatoxins. J Hepatol. 19(2):312-315.
10. Hsu HC, Huang AM, Lai PL, Chien WM, Peng SY, & Lin SW (1994) Genetic alterations at the splice junction of p53 gene in human hepatocellular carcinoma. Hepatology 19(1):122-128.
11. Hsu HC, Jeng YM, Mao TL, Chu JS, Lai PL, & Peng SY (2000) Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 157(3):763-770
12. Lin Y SC, Li B, Soo BH, Mohammed-Ali S, Wee A, Oon CJ, Mack PO, & Chan SH. (1996) Tumour suppressor p53 and Rb genes in human hepatocellular carcinoma. Ann Acad Med Singapore 25(1):22-30.
13. Branda M & Wands JR (2006) Signal transduction cascades and hepatitis B and C related hepatocellular carcinoma. Hepatology 43(5):891-902.
14. Aravalli RN, Steer CJ, & Cressman EN (2008) Molecular mechanisms of hepatocellular carcinoma. Hepatology 48(6):2047-2063.
15. Llovet JM & Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48(4):1312-1327.
16. Tsai WL & Chung RT (2010) Viral hepatocarcinogenesis. Oncogene 29(16):2309-2324.
17. Brechot C, Pourcel C, Louise A, Rain B, & Tiollais P (1980) Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature 286(5772):533-535.
18. Shafritz DA, Shouval D, Sherman HI, Hadziyannis SJ, & Kew MC (1981) Integration of hepatitis B virus DNA into the genome of liver cells in chronic liver disease and hepatocellular carcinoma. Studies in percutaneous liver biopsies and post-mortem tissue specimens. N Engl J Med 305(18):1067-1073.
19. Bonilla Guerrero R & Roberts LR (2005) The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol 42(5):760-777.
20. Feitelson MA & Lee J (2007) Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett 252(2):157-170.
21. Murakami Y, et al. (2005) Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 54(8):1162-1168.
22. Keasler VV, Hodgson AJ, Madden CR, & Slagle BL (2007) Enhancement of hepatitis B virus replication by the regulatory X protein in vitro and in vivo. J Virol 81(6):2656-2662.
23. Feitelson MA, Reis HM, Tufan NL, Sun B, Pan J, & Lian Z (2009) Putative roles of hepatitis B x antigen in the pathogenesis of chronic liver disease. Cancer Lett 286(1):69-79.
24. Levrero M (2006) Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene 25(27):3834-3847.
25. Ni YH, Huang LM, Chang MH, Yen CJ, Lu CY, You SL, Kao JH, Lin YC, Chen HL, Hsu HY, & Chen DS. (2007) Two decades of universal hepatitis B vaccination in taiwan: impact and implication for future strategies. Gastroenterology 132(4):1287-1293.
26. Gupta S, Bent S, & Kohlwes J (2003) Test characteristics of alpha-fetoprotein for detecting hepatocellular carcinoma in patients with hepatitis C. A systematic review and critical analysis. Ann Intern Med 139(1):46-50.
27. Frazer C (1999) Imaging of hepatocellular carcinoma. J Gastroenterol Hepatol 14(8):750-756
28. Kumar V FN, & Abbas A, (2009) Robbins and Cotran Pathologic Basic of Disease. 8th edition. (Hepatocellular carcinoma):878-880.
29. Katyal S, Oliver JH, Peterson MS, Ferris JV, Carr BS, & Baron RL (2000) Extrahepatic metastases of hepatocellular carcinoma. Radiology 216(3):698-703.
30. Lee JG, Kang CM, Park JS, Kim KS, Yoon DS, Choi JS, Lee WJ, Kim BR (2006) The actual five-year survival rate of hepatocellular carcinoma patients after curative resection. Yonsei Med J 47(1):105-112.
31. Llovet JM, Di Bisceglie AM, Bruix J, Kramer BS, Lencioni R, Zhu AX, Sherman M, Schwartz M, Lotze M, Talwalkar J, & Gores GJ (2008) Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 100(10):698-711.
32. Sauerbruch T, Gonzalez-Carmona AM, & Nitschmann S (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378-390.
33. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215-233.
34. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281-297.
35. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, & Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766-770.
36. Friedman RC, Farh KK, Burge CB, & Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92-105.
37. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, & Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769-773.
38. Tanzer A & Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339(2):327-335.
39. Molnar A, Schwach F, Studholme DJ, Thuenemann EC, & Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447(7148):1126-1129.
40. Lau NC, Lim LP, Weinstein EG, & Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858-862.
41. Lagos-Quintana M, Rauhut R, Lendeckel W, & Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853-858.
42. Lee RC & Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862-864.
43. Rodriguez A, Griffiths-Jones S, Ashurst JL, & Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10A):1902-1910.
44. Winter J, Jung S, Keller S, Gregory RI, & Diederichs S. (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology 11(3):228-234.
45. Chatterjee S & Grosshans H (2009) Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461(7263):546-549.
46. Kawasaki H & Taira K (2004) MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf) (48):211-212.
47. Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T. (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18(10):1602-1609.
48. Williams AE (2008) Functional aspects of animal microRNAs. Cell Mol Life Sci 65(4):545-562.
49. Maziere P & Enright AJ (2007) Prediction of microRNA targets. Drug Discov Today 12(11-12):452-458.
50. Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, & Izaurralde E (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15(1):21-32.
51. Tan Y, Zhang B, Wu T, Skogerbø G, Zhu X, Guo X, He S, & Chen R. (2009) Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol 10:12.
52. Hawkins PG & Morris KV (2008) RNA and transcriptional modulation of gene expression. Cell Cycle 7(5):602-607.
53. Boyerinas B, Park SM, Hau A, Murmann AE, & Peter ME (2010) The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 17(1):F19-36.
54. Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Sültmann H, & Lyko F (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67(4):1419-1423.
55. Viswanathan SR, Daley GQ, & Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320(5872):97-100.
56. Newman MA, Thomson JM, & Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14(8):1539-1549.
57. Piskounova E, Viswanathan SR, Janas M, LaPierre RJ, Daley GQ, Sliz P, & Gregory RI (2008) Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem 283(31):21310-21314.
58. Roush SF & Slack FJ (2009) Transcription of the C. elegans let-7 microRNA is temporally regulated by one of its targets, hbl-1. Dev Biol 334(2):523-534.
59. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J,Levine M, Leahy P, Davidson E, & Ruvkun G. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86-89.
60. Zhao XL, Sun T, Che N, Sun D, Zhao N, Dong XY, Gu Q, Yao Z, & Sun BC. (2010) Promotion of hepatocellular carcinoma metastasis through matrix metalloproteinase activation by epithelial-mesenchymal transition regulator twist1. J Cell Mol Med. [Epub ahead of print]
61. Melton C, Judson RL, & Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621-626
62. Lan FF WH, Chen YC, Chan CY, Ng SS, Li K, Xie D, He ML, Lin MC, & Kung HF. (2010) Hsa-let-7g inhibits proliferation of hepatocellular carcinoma Cells by down-regulation of c-Myc and Up-regulation of p16(INK4A). Int J Cancer. [Epub ahead of print]
63. Landi MT ZY, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M, Goldstein AM, Linnoila I, Marincola FM, Tucker MA, Bertazzi PA, Pesatori AC, Caporaso NE, McShane LM, & Wang E (2010) MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 16(2):430-441.
64. Mezzanzanica D BM, De Cecco L, Valeri B, & Canevari S (2009) Role of microRNAs in ovarian cancer pathogenesis and potential clinical implications. Int J Biochem Cell Biol [Epub ahead of print]
65. Guo Y, Chen Y, Ito H, Watanabe A, Ge X, Kodama T, & Aburatani H. (2006) Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene 384:51-61.
66. Ermolenko DN & Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59(11):1902-1913.
67. Dansranjavin T, Krehl S, Mueller T, Mueller LP, Schmoll HJ, & Dammann RH. (2009) The role of promoter CpG methylation in the epigenetic control of stem cell related genes during differentiation. Cell Cycle 8(6):916-924.
68. Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M, Jung J, Gao P, Dang CV, & Beer MA. Thomas-Tikhonenko A, Mendell JT. (2009) Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci U S A 106(9):3384-3389.
69. Schultz J, Lorenz P, Gross G, Ibrahim S, & Kunz M (2008) MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18(5):549-557.
70. Xu B, Zhang K, & Huang Y (2009) Lin28 modulates cell growth and associates with a subset of cell cycle regulator mRNAs in mouse embryonic stem cells. RNA 15(3):357-361.
71. West JA, Viswanathan SR, Yabuuchi A, Cunniff K, Takeuchi A, Park IH, Sero JE, Zhu H, Perez-Atayde A, Frazier AL, Surani MA, & Daley GQ (2009) A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature 460(7257):909-913.
72. Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, O'Sullivan M, Lu J, Phillips LA, Lockhart VL, Shah SP, Tanwar PS, Mermel CH, Beroukhim R, Azam M,Teixeira J, Meyerson M, Hughes TP, Llovet JM, Radich J, Mullighan CG, Golub TR, Sorensen PH, & Daley GQ (2009) Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41(7):843-848.
73. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, & Song E. (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109-1123.
74. Yamanaka S (2008) Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond B Biol Sci 363(1500):2079-2087.
75. Kumar MS, Lu J, Mercer KL, Golub TR, & Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39(5):673-677.
76. Moss EG & Tang L (2003) Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev Biol 258(2):432-442.
77. Lettre G JA, Gieger C, Schumacher FR, Berndt SI, Sanna S, Eyheramendy S, Voight BF, Butler JL, Guiducci C, Illig T, Hackett R, Heid IM, Jacobs KB, Lyssenko V, Uda M; Diabetes Genetics Initiative; FUSION; KORA; Prostate, Lung Colorectal and Ovarian Cancer Screening Trial; Nurses' Health Study; SardiNIA, Boehnke M, Chanock SJ, Groop LC, Hu FB, Isomaa B, Kraft P, Peltonen L, Salomaa V, Schlessinger D, Hunter DJ, Hayes RB, Abecasis GR, Wichmann HE, Mohlke KL, & Hirschhorn JN. (2008) Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet 40(5):584-591.
78. Hartge P (2009) Genetics of reproductive lifespan. Nat Genet 41(6):637-638.
79. Roush S & Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18(10):505-516.
80. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, & Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635-647.
81. Lu L, Katsaros D, Shaverdashvili K, Qian B, Wu Y, de la Longrais IA, Preti M, Menato G, Yu H (2009) Pluripotent factor lin-28 and its homologue lin-28b in epithelial ovarian cancer and their associations with disease outcomes and expression of let-7a and IGF-II. Eur J Cancer 45(12):2212-2218.
82. Weidhaas JB BI, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, & Slack FJ (2007) MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67(23):11111-11116.
83. Jeong SH WH & Park WY (2009) LIN28B confers radio-resistance through the posttranscriptional control of KRAS. Exp Mol Med 41(12):912-918.
84. Vernon AE & LaBonne C (2004) Tumor metastasis: a new twist on epithelial-mesenchymal transitions. Curr Biol 14(17):R719-721.
85. Zeisberg M & Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119(6):1429-1437.
86. Zeisberg M & Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119(6):1429-1437.
87. Yang J MS, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, & Weinberg RA. (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927-939.
88. Lopez D, Niu G, Huber P, & Carter WB (2009) Tumor-induced upregulation of Twist, Snail, and Slug represses the activity of the human VE-cadherin promoter. Arch Biochem Biophys 482(1-2):77-82.
89. Emadi Baygi M, Soheili ZS, Schmitz I, Sameie S, & Schulz WA (2010) Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biol Toxicol. [Epub ahead of print]
90. de Herreros AG, Peiro S, Nassour M, & Savagner P (2010) Snail Family Regulation and Epithelial Mesenchymal Transitions in Breast Cancer Progression. J Mammary Gland Biol Neoplasia. [Epub ahead of print]
91. Takeyama Y, Sato M, Horio M, Hase T, Yoshida K, Yokoyama T, Nakashima H, Hashimoto N, Sekido Y, Gazdar AF, Minna JD, Kondo M, & Hasegawa Y (2010) Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett. [Epub ahead of print]
92. Serova M, Astorgues-Xerri L, Bieche I, Albert S, Vidaud M, Benhadji KA, Emami S, Vidaud D, Hammel P, Theou-Anton N, Gespach C, Faivre S, & Raymond E (2010) Epithelial-to-mesenchymal transition and oncogenic Ras expression in resistance to the protein kinase Cbeta inhibitor enzastaurin in colon cancer cells. Mol Cancer Ther 9(5):1308-1317.
93. Castanon I & Baylies MK (2002) A Twist in fate: evolutionary comparison of Twist structure and function. Gene 287(1-2):11-22.
94. Venkov CD LA, Jennings JL, Plieth D, Inoue T, Nagai K, Xu C, Dimitrova YN, Rauscher FJ, & Neilson EG. (2007) A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Invest 117(2):482-491.
95. Kida Y AK, Teraoka H, Gitelman I, & Sato T. (2007) Twist relates to tubular epithelial-mesenchymal transition and interstitial fibrogenesis in the obstructed kidney. J Histochem Cytochem 55(7):661-673.
96. Yang Z ZX, Gang H, Li X, Li Z, Wang T, Han J, Luo T, Wen F, & Wu X. (2007) Up-regulation of gastric cancer cell invasion by Twist is accompanied by N-cadherin and fibronectin expression. Biochem Biophys Res Commun 358(3):925-930.
97. Yang MH WM, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC, & Wu KJ. (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10(3):295-305.
98. Hay ED & Zuk A (1995) Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 26(4):678-690.
99. Raymond WA & Leong AS (1989) Vimentin-- a new prognostic parameter in breast carcinoma. J Pathol 158(2):107-114.
100. Hector Peinado EB, Manel Esteller, & Amparo Cano (2004) Snail Mediates E-Cadherin Repression by the Recruitment of the Sin3A/Histone Deacetylase 1 (HDAC1)/HDAC2 Complex. Molecular and Cellular Biology 24(1):306-319.
101. Ohkubo T & Ozawa M (2004) The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. Journal of Cell Science 117:1675-1685.
102. Olmeda D, Jordá M, Peinado H, Fabra A, & Cano A (2007) Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene 26:1862-1874.
103. Sonia Vega AVM, Oscar H. Ocaña, Francisco Valdés, Isabel Fabregat, & M. Angela Nieto (2004) Snail blocks the cell cycle and confers resistance to cell death. Genes & Dev. 18:1131-1143.
104. Yu W, Kamara, H, & Svoboda, K.K (2008) The role of twist during palate development. Dev. Dyn 237:2716-2725.
105. Heo I, Joo C, Cho J, Ha M, Han J, & Kim VN (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32(2):276-284.
106. Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, & Kim VN (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138(4):696-708.
107. Wong TS, Man OY, Tsang CM, Tsao SW, Tsang RK, Chan JY, Ho WK, Wei WI, & To VS (2010) MicroRNA let-7 suppresses nasopharyngeal carcinoma cells proliferation through downregulating c-Myc expression. J Cancer Res Clin Oncol. [Epub ahead of print]
108. Mayr C, Hemann MT, & Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315(5818):1576-1579.
109. Lee YS & Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21(9):1025-1030.
110. Lewis BP, Burge CB, & Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15-20.
111. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, & Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91-105.
112. Scharf JG & Braulke T (2003) The role of the IGF axis in hepatocarcinogenesis. Horm Metab Res 35(11-12):685-693.
113. Iliopoulos D, Hirsch HA, & Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693-706.
114. Bruce WR & Van Der Gaag H (1963) A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199:79-80.
115. Hamburger AW & Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197(4302):461-463.
116. Park CH, Bergsagel DE, & McCulloch EA (1971) Mouse myeloma tumor stem cells: a primary cell culture assay. J. Natl. Cancer Inst. 46(2):411-422.
117. Alexei V. Salnikov GK, Vanessa Rausch, Helge Bruns, Wolfgang Gross, Akmal Khamidjanov, Eduard Ryschich, Martha-Maria Gebhard, Gerhard Moldenhauer, Markus W. Büchler, Peter Schemmer & Ingrid Herr (2009) Cancer stem cell marker expression in hepatocellular carcinoma and liver metastases is not sufficient as single prognostic parameter. Cancer Letters 252(2):185-193.
118. Bonnet D & Dick JE (1996) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3(7):730-737.
119. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, & Guan XY (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132(7):2542-2556
120. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, & Buck DW (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90(12):5013-5021
121. Yin S LJ, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, & Gu J. (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120(7):1444-1450.
122. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, & Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100(11):3983-39883.
123. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, & Farrar WL (2008) CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br. J. Cancer 98(4):756-765.
124. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, & Seed B (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 611(7):1303-1313.
125. Endo K & Terada T (2000) Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J Hepatol 32(1):78-84.
126. Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ, & Rosner MR (2009) Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 28(4):347-358.
127. Mani SA GW, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, & Weinberg RA. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704-715.
128. Liu M, Casimiro MC, Wang C, Shirley LA, Jiao X, Katiyar S, Ju X, Li Z, Yu Z, Zhou J, Johnson M, Fortina P, Hyslop T, Windle JJ, & Pestell RG (2009) p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proc Natl Acad Sci U S A 106(45):19035-19039.
129. Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, & Moustakas A (2006) Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174(2):175-183.
130. Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, Liu T, Simons JW, & O'Regan RM (2008) Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 68(7):2479-2488.
131. Kim HJ, Litzenburger BC, Cui X, Delgado DA, Grabiner BC, Lin X, Lewis MT, Gottardis MM, Wong TW, Attar RM, Carboni JM, & Lee AV (2007) Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol 27(8):3165-3175.
132. Fernández AM, Dupont J, Farrar RP, Lee S, Stannard B, & Le Roith D (2002) Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest 109(3):347-355.
133. Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, & Wulczyn FG (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10(8):987-993.
134. Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A, Gherzi R, & Rosenfeld MG (2009) The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459(7249):1010-1014.
135. Michlewski G, Guil S, Semple CA, & Cáceres JF (2008) Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol. Cell 32(3):383-393.
136. Samani AA & Brodt P (2001) The receptor for the type I insulin-like growth factor and its ligands regulate multiple cellular functions that impact on metastasis. Surg Oncol Clin N Am 10(2):289-312.
137. Giorgetti S BR, Kowalski-Chauvel A, Tartare S, & Van Obberghen E (1993) The insulin and insulin-like growth factor-I receptor substrate IRS-1 associates with and activates phosphatidylinositol 3-kinase in vitro. J Biol Chem 268(10):7356-7364.
138. Pardee AB (1989) G1 events and regulation of cell proliferation. Science 246(4930):603-608.
139. Jansson M HD, Koho H, Andersson G, Berghard L, Heidrich J, Nyberg E, Uhlen M, Kordel J, & Nilsson B (1997) Characterization of ligand binding of a soluble human insulin-like growth factor I receptor variant suggests a ligand-induced conformational change. J Biol Chem 272(13):8189-8197.
140. Dricu A WM, Hjertman M, Malec M, Blegen H, Wejde J, Carlberg M, & Larsson O (1997) Mevalonate-regulated mechanisms in cell growth control: role of dolichyl phosphate in expression of the insulin-like growth factor-1 receptor (IGF-1R) in comparison to Ras prenylation and expression of c-myc. Glycobiology 7(5):625-633.
141. Carlberg M DA, Blegen H, Wang M, Hjertman M, Zickert P, Hoog A, & Larsson O (1996) Mevalonic acid is limiting for N-linked glycosylation and translocation of the insulin-like growth factor-1 receptor to the cell surface. Evidence for a new link between 3-hydroxy-3-methylglutaryl-coenzyme a reductase and cell growth. J Biol Chem 271(29):17453-17462.
142. Dricu A KL, Wang M, Nilsson G, Hjertman M, Wejde J, & Larsson O (1999) Expression of the insulin-like growth factor 1 receptor (IGF-1R) in breast cancer cells: evidence for a regulatory role of dolichyl phosphate in the transition from an intracellular to an extracellular IGF-1 pathway. Glycobiology 9(6):571-579.
143. Desbois-Mouthon C, Baron A, Blivet-Van Eggelpoël MJ, Fartoux L, Venot C, Bladt F, Housset C, & Rosmorduc O (2009) Insulin-like growth factor-1 receptor inhibition induces a resistance mechanism via the epidermal growth factor receptor/HER3/AKT signaling pathway: rational basis for cotargeting insulin-like growth factor-1 receptor and epidermal growth factor receptor in hepatocellular carcinoma. Clin Cancer Res 15(17):5445-5456.
144. Cantarini MC, de la Monte SM, Pang M, Tong M, D'Errico A, Trevisani F, & Wands JR (2006) Aspartyl-asparagyl beta hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and notch signaling mechanisms. Hepatology 44(2):446-457.
145. Balzer E, Heine C, Jiang Q, Lee VM, & Moss EG (2010) LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro. Development 137(6):891-900.
146. Gidekel S PG, Bergman Y, & Pikarsky E. (2003) Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4(5):361-370.
147. Peng S, Maihle N J, Huang, Y (2010) Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene [Epub ahead of print]
148. Saiki Y, Ishimaru S, Mimori K, Takatsuno Y, Nagahara M, Ishii H, Yamada K, Mori M (2009) Comprehensive analysis of the clinical significance of inducing pluripotent stemness-related gene expression in colorectal cancer cells. Ann Surg Oncol 16(9):2638-2644
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44749-
dc.description.abstract許多microRNA (miRNA) 於人類癌症中常受抑制,如let-7 miRNA 家族。let-7 miRNA 家族除了調節癌細胞的自體更新(self-renewal)及腫瘤形成能力(tumorigenecity)外,於胚胎發育中也扮演重要角色。最近研究發現RNA結合蛋白(RNA-binding protein) Lin-28及Lin-28B會透過let-7的前趨物(precursor)於末端之尿嘧啶化(uridylation)並使之分解,以致let-7生合成減少。在肝癌細胞中,我們發現只有Lin-28B會高度表現,而Lin-28並沒有此現象。此外,Lin-28B較常表現於高度表現α胎兒蛋白並且分級(grade)較高的肝癌。於肝癌細胞株中,Hep3B及HCC36所表現的Lin-28B量最多,因此我們選擇這兩株細胞株為研究之用。我們利用RNA干擾的方式將其Lin-28B 敲減(knockdown)。利用轉殖Lin-28B載體,使Lin-28B過度表現於HA22T。Lin-28B被knockdown的細胞株Hep3B及HCC36在體外增生的速度降低。Lin-28B敲減的Hep3B細胞株在免疫不全小鼠(NOD/SCID mice)生成腫瘤的速率也下降。相反地,Lin-28B過度表現的HA22T細胞生長速度較快,且生成腫瘤的能力也較高。我們也發現過度表現Lin-28B的HA22T會引起上皮-間質轉化(Epithelial-mesenchymal transition),而使其侵犯(invasion)及移動(migration)能力皆提高。由於Lin-28B與let-7 miRNA的密切關係,我們以大規模即時PCR陣列(Large-scale real-time PCR array)進一步研究,分析顯示Lin-28B所調節最主要的miRNA是let-7/mir-98家族。Lin-28B過度表現會使let-7所抑制的基因c-myc及HMGA2表現量增加; Lin-28B過度表現也會使受let-7控制的第一型類胰島素成長因子受體(IGF1R)表現量上升。我們的研究結果顯示,透過共同抑制let-7/mir-98家族及許多致癌基因途徑,Lin-28B於肝癌腫瘤形成及轉移扮演著重要的角色。zh_TW
dc.description.abstractIn human cancers, multiple members of microRNAs (miRNA) are often repressed, such as the let-7 family miRNA. The let-7 family regulates self-renewal and tumorigenicity of cancer cells, and plays critical roles in embryonic development. The RNA binding proteins Lin-28 and Lin-28B are recently demonstrated to negatively regulate let-7 biogenesis by inducing terminal uridylation and degradation of the let-7 precursors. In this study, we showed that in hepatocellular carcinoma (HCC), only Lin-28B but not Lin-28 was highly expressed. Lin-28B expression in HCC was more frequently found in high grade tumors with high α-fetoprotein levels. Among the HCC cell lines, Hep3B and HCC36 expressed higher levels of Lin-28B than the other cell lines, and were chosen for gene knockdown of Lin-28B. HA22T cell line which had very low level or undetectable Lin-28B, was chosen for ectopic expression of Lin-28B. Knockdown of Lin-28B by RNA interference in the Hep3B and HCC36 led to suppressed proliferation in vitro and reduced in vivo tumor growth in NOD/SCID mice. In contrast, overexpression of Lin-28B in HA22T enhanced proliferation and tumorigenecity. Moreover, overexpression of Lin-28B induced epithelial-mesenchymal transition in HA22T cells, accompanied by increased invasion and migration capacity. To further delineate the role of Lin-28B in the expression of miRNA family, we did a large-scale real-time PCR array analysis. The results revealed that only let-7/mir-98 family members were regulated by Lin-28B. Lin-28B overexpression enhanced the expression of the known let-7 targets c-myc and HMGA2. In this study, we also found that Lin-28B enhanced the expression of type 1 insulin-like growth factor receptor (IGF1R) in a let-7-dependent manner. These findings highlight the important role for Lin-28B in tumor formation and invasion in HCC, through coordinated repression of the let-7/mir-98 family and induction of multiple oncogenic pathways.en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:54:06Z (GMT). No. of bitstreams: 1
ntu-99-R97444008-1.pdf: 5207538 bytes, checksum: 638660603bb1f5f0d5e3010235f6f425 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 II
中文摘要 III
ABSTRACT V
CONTENTS VII
1. INTRODUCTION 1
1.1 Hepatocellular carcinoma (HCC) 1
1.2 MicroRNA 5
1.3 Let-7/mir-98 family miRNA 6
1.4 Lin-28 and Lin-28B 8
1.5 Epithelial-mesenchymal transition or transformation (EMT) 11
2. MATERIAL AND METHODS 13
2.1 Cell culture 13
2.2 Construction of the Lin28B vector 13
2.3 Transfection and viral infection 14
2.4 RNA interference 14
2.5 RNA isolation 15
2.6 RT-PCR 15
2.7 Western Blot 16
2.8 In vitro Boyden chamber Invasion Assay 18
2.9 Cell proliferation assay (MTT assay) 18
2.10 Soft agar assay 19
2.11 Tumorigenecity assay 19
2.12 Wound-healing Assay 20
3. RESULTS 21
3.1 Lin-28B but not Lin-28 is overexpressed in HCC 21
3.2 Lin-28B is highly expressed in Hep3B and HCC36 21
3.3 Knockdown of Lin-28B in Hep3B and HCC36 reduced proliferation rate, anchorage-independent growth and tumorigenecity. 22
3.4 Lin-28B-overexpressing HA22T enhanced proliferation, anchorage- independent growth ability and tumorigenecity. 23
3.5 Lin-28B-overexpressing HA22T has morphology change. 24
3.6 Lin-28B enhances epithelial-mesenchymal transition and tumor invasion. 25
3.7 In HCC, let-7/mir-98 family is the major target of Lin-28B. 26
3.8 Lin-28B activates several oncogenic pathways through the reduction of let-7 family. 27
4. DISCUSSION AND CONCLUSIONS 29
5. FIGURES AND TABLE 35
Text-Figure 1. The model for the biogenesis and post-transcriptional processing of microRNAs and small interfering RNAs. 35
Text-Figure 2. The amino acid sequence and structure of Lin-28 and Lin-28B 36
Figure 1. Measurement of Lin-28 and Lin-28B mRNA expression in HCC by RT-PCR. 37
Table 1. Clinicopathologic significance of Lin-28B expression in HCC 39
Figure 2. Lin-28B expression in the tumor did not affect the survival of HCC patients. 40
Figure 3. Measurements of Lin-28B expression in HCC cell lines by RT-PCR and Western blot. 41
Figure 4. Knockdown of Lin-28B in HCC cell lines using the small hairpin RNA (shRNA) in lentiviral vector pLKO.1 against different Lin-28B sequences. 43
Figure 5. Cell proliferation ability of Hep3B was determined using MTT assay. 44
Figure 6. The soft agar assay for Hep3B cells. 45
Figure 7. The tumorigenecity of Hep3B implanted subcutaneously to NOD/SCID mice. 48
Figure 8. Cell proliferation ability of HCC36 was determined using MTT assay. 49
Figure 9. Knockdown of Lin-28B in Huh7-vgh also decrease anchorage independent growth ability and the in vivo tumorigenecity. 51
Figure 10. Knockdown of Lin-28B in SK-Hep1 also decrease proliferation rate, anchorage independent growth ability and the tumorigenecity. 54
Figure 11. Determination of the percentage of CD44 positive cells by flow cytometry. 55
Figure 12. Lin-28B overexpression in HA22T. 56
Figure 13. Cell proliferation ability of HA22T was determined using MTT assay. 57
Figure 14. The soft agar assay for HA22T. 58
Figure 15. The tumorigenecity of HA22T implanted subcutaneously to NOD/SCID mice. 60
Figure 16. Morphology change of Lin-28B-overexpressing HA22T. 62
Figure 17. Western blot analysis of EMT markers. 63
Figure 18. Lin-28B overexpresion in MB231 also enhances vimentin expression. 64
Figure 19. Wound-healing assay 65
Figure 20. Boyden chamber assay 67
Figure 21. Large-scale real-time PCR array analyzed the miRNA expression profile of HA22T cells with Lin-28B and vector control. 68
Figure 22. Western blot analysis of the targets of let-7. 69
Figure 23. Luciferase assay reveals only site 1 and 3 were enhanced by Lin-28B overexpression. 70
Figure 24. The RTK array analysis of HA22T overexpressing Lin-28B. 71
Figure 25. Aberrant expression of Lin-28B in HCC enhances tumor growth, EMT, and invasion. 72
6. REFERENCE 73
dc.language.isoen
dc.subject侵犯zh_TW
dc.subject肝細胞癌zh_TW
dc.subjectlet-7zh_TW
dc.subjectLin-28Bzh_TW
dc.subject轉形zh_TW
dc.subjectHepatocellular carcinoma(HCC)en
dc.subjecttransformationen
dc.subjectLin-28Ben
dc.subjectlet-7en
dc.subjectinvasionen
dc.titleLin-28B表現會引起肝細胞癌的轉形及侵犯zh_TW
dc.titleLin-28B expression promotes transformation and invasion in human hepatocellular carcinomaen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許輝吉,張?仁,葉秀慧,周涵怡
dc.subject.keyword肝細胞癌,let-7,Lin-28B,轉形,侵犯,zh_TW
dc.subject.keywordHepatocellular carcinoma(HCC),let-7,Lin-28B,transformation,invasion,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2010-06-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept病理學研究所zh_TW
顯示於系所單位:病理學科所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
5.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved