請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44747
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭永銘 | |
dc.contributor.author | Mow-Jung Feng | en |
dc.contributor.author | 酆茂蓉 | zh_TW |
dc.date.accessioned | 2021-06-15T03:54:03Z | - |
dc.date.available | 2013-09-09 | |
dc.date.copyright | 2010-09-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-06-30 | |
dc.identifier.citation | Aboussekhra, A., Biggerstaff, M., Shivji, M.K., Vilpo, J.A., Moncollin, V., Podust, V.N., Protic, M., Hubscher, U., Egly, J.M., and Wood, R.D. (1995). Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80, 859-868.
Ando, T., Kawabe, T., Ohara, H., Ducommun, B., Itoh, M., and Okamoto, T. (2001). Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage. J Biol Chem 276, 42971-42977. Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., Ohkuma, Y., and Hanaoka, F. (2001). Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem 276, 18665-18672. Asamoto, M., Iwahori, Y., Okamura, T., Shirai, T., and Tsuda, H. (1997). Decreased expression of the p16/MTS1 gene without mutation is frequent in human urinary bladder carcinomas. Jpn J Clin Oncol 27, 22-25. Chen, J., Jackson, P.K., Kirschner, M.W., and Dutta, A. (1995). Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 374, 386-388. Chen, X., Cheung, S.T., So, S., Fan, S.T., Barry, C., Higgins, J., Lai, K.M., Ji, J., Dudoit, S., Ng, I.O., et al. (2002). Gene expression patterns in human liver cancers. Mol Biol Cell 13, 1929-1939. Cheung, K.J., Jr., Mitchell, D., Lin, P., and Li, G. (2001). The tumor suppressor candidate p33(ING1) mediates repair of UV-damaged DNA. Cancer Res 61, 4974-4977. Costa, R.M., Chigancas, V., Galhardo Rda, S., Carvalho, H., and Menck, C.F. (2003). The eukaryotic nucleotide excision repair pathway. Biochimie 85, 1083-1099. Dantuma, N.P., Heinen, C., and Hoogstraten, D. (2009). The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair (Amst) 8, 449-460. Dotto, G.P. (2000). p21(WAF1/Cip1): more than a break to the cell cycle? Biochim Biophys Acta 1471, M43-56. El-Serag, H.B., and Rudolph, K.L. (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557-2576. Elder, R.T., Song, X.Q., Chen, M., Hopkins, K.M., Lieberman, H.B., and Zhao, Y. (2002). Involvement of rhp23, a Schizosaccharomyces pombe homolog of the human HHR23A and Saccharomyces cerevisiae RAD23 nucleotide excision repair genes, in cell cycle control and protein ubiquitination. Nucleic Acids Res 30, 581-591. Feng, X., Hara, Y., and Riabowol, K. (2002). Different HATS of the ING1 gene family. Trends Cell Biol 12, 532-538. Hiyama, H., Yokoi, M., Masutani, C., Sugasawa, K., Maekawa, T., Tanaka, K., Hoeijmakers, J.H., and Hanaoka, F. (1999). Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J Biol Chem 274, 28019-28025. Hoeijmakers, J.H. (2001). Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374. Hosokawa, M., Takehara, A., Matsuda, K., Eguchi, H., Ohigashi, H., Ishikawa, O., Shinomura, Y., Imai, K., Nakamura, Y., and Nakagawa, H. (2007). Oncogenic role of KIAA0101 interacting with proliferating cell nuclear antigen in pancreatic cancer. Cancer Res 67, 2568-2576. Hsieh, H.C., Hsieh, Y.H., Huang, Y.H., Shen, F.C., Tsai, H.N., Tsai, J.H., Lai, Y.T., Wang, Y.T., Chuang, W.J., and Huang, W. (2005). HHR23A, a human homolog of Saccharomyces cerevisiae Rad23, regulates xeroderma pigmentosum C protein and is required for nucleotide excision repair. Biochem Biophys Res Commun 335, 181-187. Hsu, H.C., Huang, A.M., Lai, P.L., Chien, W.M., Peng, S.Y., and Lin, S.W. (1994). Genetic alterations at the splice junction of p53 gene in human hepatocellular carcinoma. Hepatology 19, 122-128. Hsu, H.C., Jeng, Y.M., Mao, T.L., Chu, J.S., Lai, P.L., and Peng, S.Y. (2000). Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 157, 763-770. Hsu, H.C., Tseng, H.J., Lai, P.L., Lee, P.H., and Peng, S.Y. (1993). Expression of p53 gene in 184 unifocal hepatocellular carcinomas: association with tumor growth and invasiveness. Cancer Res 53, 4691-4694. Kumar, S., Talis, A.L., and Howley, P.M. (1999). Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J Biol Chem 274, 18785-18792. Lee, H., Quinn, J.C., Prasanth, K.V., Swiss, V.A., Economides, K.D., Camacho, M.M., Spector, D.L., and Abate-Shen, C. (2006). PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Dev 20, 784-794. Lehmann, A.R. (2001). The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev 15, 15-23. Lieber, M.R. (2010). The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annu Rev Biochem. Livneh, Z. (2006). Keeping mammalian mutation load in check: regulation of the activity of error-prone DNA polymerases by p53 and p21. Cell Cycle 5, 1918-1922. Luo, Y., Hurwitz, J., and Massague, J. (1995). Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 375, 159-161. Lustig, B., and Behrens, J. (2003). The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 129, 199-221. Maya-Mendoza, A., Tang, C.W., Pombo, A., and Jackson, D.A. (2009). Mechanisms regulating S phase progression in mammalian cells. Front Biosci 14, 4199-4213. Min, J.H., and Pavletich, N.P. (2007). Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570-575. Mizutani, K., Onda, M., Asaka, S., Akaishi, J., Miyamoto, S., Yoshida, A., Nagahama, M., Ito, K., and Emi, M. (2005). Overexpressed in anaplastic thyroid carcinoma-1 (OEATC-1) as a novel gene responsible for anaplastic thyroid carcinoma. Cancer 103, 1785-1790. Nagase, T., Miyajima, N., Tanaka, A., Sazuka, T., Seki, N., Sato, S., Tabata, S., Ishikawa, K., Kawarabayasi, Y., Kotani, H., et al. (1995). Prediction of the coding sequences of unidentified human genes. III. The coding sequences of 40 new genes (KIAA0081-KIAA0120) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res 2, 37-43. Nakanishi, M., Robetorye, R.S., Pereira-Smith, O.M., and Smith, J.R. (1995). The C-terminal region of p21SDI1/WAF1/CIP1 is involved in proliferating cell nuclear antigen binding but does not appear to be required for growth inhibition. J Biol Chem 270, 17060-17063. Nandi, D., Tahiliani, P., Kumar, A., and Chandu, D. (2006). The ubiquitin-proteasome system. J Biosci 31, 137-155. Ng, J.M., Vermeulen, W., van der Horst, G.T., Bergink, S., Sugasawa, K., Vrieling, H., and Hoeijmakers, J.H. (2003). A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev 17, 1630-1645. Park, W.S., Park, J.Y., Oh, R.R., Yoo, N.J., Lee, S.H., Shin, M.S., Lee, H.K., Han, S., Yoon, S.K., Kim, S.Y., et al. (2000). A distinct tumor suppressor gene locus on chromosome 15q21.1 in sporadic form of colorectal cancer. Cancer Res 60, 70-73. Paunesku, T., Mittal, S., Protic, M., Oryhon, J., Korolev, S.V., Joachimiak, A., and Woloschak, G.E. (2001). Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int J Radiat Biol 77, 1007-1021. Pelissier, P., Delourme, D., Germot, A., Blanchet, X., Becila, S., Maftah, A., Leveziel, H., Ouali, A., and Bremaud, L. (2008). An original SERPINA3 gene cluster: elucidation of genomic organization and gene expression in the Bos taurus 21q24 region. BMC Genomics 9, 151. Piao, Z., Kim, H., Jeon, B.K., Lee, W.J., and Park, C. (1997). Relationship between loss of heterozygosity of tumor suppressor genes and histologic differentiation in hepatocellular carcinoma. Cancer 80, 865-872. Rubbi, C.P., and Milner, J. (2001). Analysis of nucleotide excision repair by detection of single-stranded DNA transients. Carcinogenesis 22, 1789-1796. Schafer, D.F., and Sorrell, M.F. (1999). Hepatocellular carcinoma. Lancet 353, 1253-1257. Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W., and Madura, K. (1998). Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391, 715-718. Schermelleh, L., Spada, F., and Leonhardt, H. (2008). Visualization and measurement of DNA methyltransferase activity in living cells. Curr Protoc Cell Biol Chapter 22, Unit 22 12. Scott, M., Bonnefin, P., Vieyra, D., Boisvert, F.M., Young, D., Bazett-Jones, D.P., and Riabowol, K. (2001). UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. J Cell Sci 114, 3455-3462. Sherr, C.J., and McCormick, F. (2002). The RB and p53 pathways in cancer. Cancer Cell 2, 103-112. Shuck, S.C., Short, E.A., and Turchi, J.J. (2008). Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 18, 64-72. Simpson, F., Lammerts van Bueren, K., Butterfield, N., Bennetts, J.S., Bowles, J., Adolphe, C., Simms, L.A., Young, J., Walsh, M.D., Leggett, B., et al. (2006). The PCNA-associated factor KIAA0101/p15(PAF) binds the potential tumor suppressor product p33ING1b. Exp Cell Res 312, 73-85. Sugasawa, K., Masutani, C., Uchida, A., Maekawa, T., van der Spek, P.J., Bootsma, D., Hoeijmakers, J.H., and Hanaoka, F. (1996). HHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol Cell Biol 16, 4852-4861. Sugasawa, K., Ng, J.M., Masutani, C., Maekawa, T., Uchida, A., van der Spek, P.J., Eker, A.P., Rademakers, S., Visser, C., Aboussekhra, A., et al. (1997). Two human homologs of Rad23 are functionally interchangeable in complex formation and stimulation of XPC repair activity. Mol Cell Biol 17, 6924-6931. Teramoto, T., Satonaka, K., Kitazawa, S., Fujimori, T., Hayashi, K., and Maeda, S. (1994). p53 gene abnormalities are closely related to hepatoviral infections and occur at a late stage of hepatocarcinogenesis. Cancer Res 54, 231-235. Thorgeirsson, S.S., and Grisham, J.W. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31, 339-346. Tsukiyama-Kohara, K., Tone, S., Maruyama, I., Inoue, K., Katsume, A., Nuriya, H., Ohmori, H., Ohkawa, J., Taira, K., Hoshikawa, Y., et al. (2004). Activation of the CKI-CDK-Rb-E2F pathway in full genome hepatitis C virus-expressing cells. J Biol Chem 279, 14531-14541. Turchi, L., Fareh, M., Aberdam, E., Kitajima, S., Simpson, F., Wicking, C., Aberdam, D., and Virolle, T. (2009). ATF3 and p15PAF are novel gatekeepers of genomic integrity upon UV stress. Cell Death Differ 16, 728-737. van Veelen, L.R., Cervelli, T., van de Rakt, M.W., Theil, A.F., Essers, J., and Kanaar, R. (2005). Analysis of ionizing radiation-induced foci of DNA damage repair proteins. Mutat Res 574, 22-33. Volker, M., Mone, M.J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., Hoeijmakers, J.H., van Driel, R., van Zeeland, A.A., and Mullenders, L.H. (2001). Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8, 213-224. Waga, S., Hannon, G.J., Beach, D., and Stillman, B. (1994). The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574-578. Warbrick, E. (2000). The puzzle of PCNA's many partners. Bioessays 22, 997-1006. Watanabe, H., Pan, Z.Q., Schreiber-Agus, N., DePinho, R.A., Hurwitz, J., and Xiong, Y. (1998). Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci U S A 95, 1392-1397. Watkins, J.F., Sung, P., Prakash, L., and Prakash, S. (1993). The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol 13, 7757-7765. Yokoi, M., Masutani, C., Maekawa, T., Sugasawa, K., Ohkuma, Y., and Hanaoka, F. (2000). The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J Biol Chem 275, 9870-9875. Yu, M.C., Yuan, J.M., Govindarajan, S., and Ross, R.K. (2000). Epidemiology of hepatocellular carcinoma. Can J Gastroenterol 14, 703-709. Yu, P., Huang, B., Shen, M., Lau, C., Chan, E., Michel, J., Xiong, Y., Payan, D.G., and Luo, Y. (2001). p15(PAF), a novel PCNA associated factor with increased expression in tumor tissues. Oncogene 20, 484-489. Yuan, R.H., Jeng, Y.M., Pan, H.W., Hu, F.C., Lai, P.L., Lee, P.H., and Hsu, H.C. (2007). Overexpression of KIAA0101 predicts high stage, early tumor recurrence, and poor prognosis of hepatocellular carcinoma. Clin Cancer Res 13, 5368-5376. Zilfou, J.T., and Lowe, S.W. (2009). Tumor Suppressive Functions of p53. Cold Spring Harb Perspect Biol 1, a001883. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44747 | - |
dc.description.abstract | 經由DNA微陣列的分析,我們發現KIAA0101 (p15PAF) 過度表現在肝細胞癌中。KIAA0101是一個與增殖細胞核抗原(PCNA)結合的蛋白質,但其功能目前尚未明瞭。在本篇論文裡,我們發現KIAA0101只表現在細胞週期中的S期。降低細胞中KIAA0101的表現會抑制細胞週期由G1期進入S期的進行,並且抑制BrdU的嵌入。降低KIAA0101的表現會誘導p21的過度表現。為了進一步的了解KIAA0101功能的分子機制,我們利用酵母菌雙雜交系統,尋找與之進行交互作用的蛋白質。我們發現Rad23A可與KIAA0101結合。經由免疫沈澱分析法我們證明EGFP-tagged KIAA0101確實能夠與Rad23A交互結合。Rad23A是一個在核苷酸切除修復擔任要角的蛋白質,也暗示KIAA0101可能參與DNA修復。結果如同預期,細胞群落分析的結果顯示,KIAA0101表現的降低會使細胞對紫外光敏感增高。在紫外光照射之下也觀察到KIAA0101表現降低的細胞其DNA合成會減少。這些結果顯示,KIAA0101是一個多功能的與增殖細胞核抗原結合的蛋白質,並參與調節DNA合成與修復。 | zh_TW |
dc.description.abstract | By microarray analysis, we identified KIAA0101 (p15PAF) as a gene overexpressed in hepatocellular carcinoma. KIAA0101 is a proliferating cell nuclear antigen (PCNA)-binding protein of unknown function. In this study, we found that KIAA0101 was expressed only in S phase of the cell cycle. Knockdown of KIAA0101 inhibited cell cycle progression from G1 to S phase and suppressed BrdU incorporation. Knockdown of KIAA0101 induced p21 overexpression. To further delineate the molecular mechanism for the function of KIAA0101 protein, the yeast two hybrid assay was used to identify the interacting proteins. Rad23A was identified as a putative KIAA0101-binding protein. Using the immunoprecipitation assay, we demonstrated that EGFP-tagged KIAA0101 interacted with Rad23A, confirming the interaction of KIAA0101 and Rad23A in vivo. Rad23A is a major player in nucleotide excision repair. This result suggests that KIAA0101 play a role in DNA damage repair. Consistent with this suggestion, colony formation assay showed that KIAA0101 depletion sensitized cells to UV. Moreover, DNA synthesis was decreased in cells with KIAA0101 knockdown under UV irradiation. These results suggest that KIAA0101 is a multifunctional PCNA-interacting protein, and play important roles in regulating DNA synthesis and repair. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:54:03Z (GMT). No. of bitstreams: 1 ntu-99-R97444004-1.pdf: 3456267 bytes, checksum: 3a347c78f93b3e7a695d0cd0dbdba378 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 III ABSTRACT IV CONTENTS V 1. INTRODUCTION 1 1.1 HEPATOCELLULAR CARCINOMA 2 1.2 MICROARRAY 3 1.3 EXPRESSION OF KIAA0101 IN HCC AND OTHER TISSUES 3 1.4 KIAA0101 IS A PCNA ASSOCIATED FACTOR 4 1.5 KIAA0101 REVIEWS 6 1.6 THE MECHANISMS OF DNA REPAIR 7 1.7 PURPOSES OF STUDY 8 2. MATERIALS AND METHODS 10 2.1 VECTORS CONSTRUCTION 11 2.2 CELL CULTURE 11 2.3 RNA INTERFERENCE 11 2.4 RNAI KNOCKDOWN OF KIAA0101 12 2.5 RNA ISOLATION AND RT-PCR 12 2.6 CELL PROLIFERATION ASSAY 13 2.7 CELL CYCLE SYNCHRONIZATION 13 2.8 FLOW CYTOMETRY 13 2.9 IMMUNOFLUORESCENT STAINING 14 2.10 WESTERN BLOT 14 2.11 YEAST TWO HYBRID SYSTEM 15 2.12 IMMUNOPRECIPITATION 15 2.13 UV IRRADIATION TREATMENT 16 2.14 COLONY FORMATION ASSAY 16 3. RESULTS 17 3.1 KIAA0101 IS EXPRESSED IN S PHASE 18 3.2 KNOCKDOWN OF KIAA0101 REDUCED CELL PROLIFERATION 18 3.3 KNOCKDOWN OF KIAA0101 INHIBITS CELL CYCLE PROGRESSION FROM G1 TO S PHASE 18 3.4 KIAA0101 IS REQUIRED FOR S PHASE PROGRESSION 19 3.5 KIAA0101 FOCI APPEARED BEFORE THE BRDU INCORPORATION 20 3.6 REDUCED DNA SYNTHESIS IN THE KIAA0101-KNOCKDOWNED CELLS 20 3.7 CDK INHIBITOR P21 IS ELEVATED IN KIAA0101-KNOCKDOWNED CELLS 21 3.8 RAD23A WAS IDENTIFIED AS A PUTATIVE KIAA0101-BINDING PROTEIN USING A YEAST TWO HYBRID ASSAY 21 3.9 INTERACTIONS BETWEEN KIAA0101 AND RAD23A IN VIVO 23 3.10 KNOCKDOWN OF KIAA0101 SENSITIZED CELLS TO UV 23 3.11 XPC PROTEIN EXPRESSION DID NOT CHANGE IN KIAA0101-KNOCKDOWNED HELA CELLS 23 3.12 GLOBAL GENOME DNA DAMAGE REPAIR UPON UV IRRADIATION REQUIRES KIAA0101 FOR DNA SYNTHESIS 24 4. DISCUSSION 25 4.1 KIAA0101 IS REQUIRED FOR S PHASE PROGRESSION 26 4.2 RAD23A WAS IDENTIFIED AS A PUTATIVE KIAA0101-BINDING PROTEIN 28 4.3 INTERACTION OF RAD23A AND KIAA0101 IN VIVO 29 4.4 XPC PROTEIN EXPRESSION DID NOT CHANGE IN KIAA0101-KNOCKDOWNED CELLS 30 4.5 THE POTENTIAL ROLE OF KIAA0101 IN DNA REPAIR 31 5. TABLES AND FIGURES 34 TABLE 1. RESULTS OF YEAST TWO HYBRID SYSTEM 35 FIGURE 1. KIAA0101 IS EXPRESSED IN S PHASE. 36 FIGURE 2. KNOCKDOWN OF KIAA0101 REDUCED CELL PROLIFERATION. 37 FIGURE 3. THE KIAA0101 IS REQUIRED FOR S PHASE PROGRESSION. 38 FIGURE 4. KIAA0101 EXPRESSION AFTER RELEASING FROM THE THYMIDINE- APHIDICOLIN BLOCK IN HELA CELLS. 39 FIGURE 5. BRDU-FITC STAINING AFTER RELEASED FROM THE THYMIDINE-APHIDICOLIN SYNCHRONIZATION. 40 FIGURE 6. KIAA0101 EXPRESSED BEFORE THE ONSET OF DNA SYNTHESIS. 41 FIGURE 7. BRDU INCORPORATION CYTOGRAM. 42 FIGURE 8. THE EXPRESSION LEVEL OF CDK INHIBITOR P21 AND P16 AFTER KNOCK DOWN OF KIAA0101. 43 FIGURE 9. THE INTERACTION OF SPECIFIC DOMAINS OF RAD23A WITH KIAA0101 TESTED IN THE YEAST TWO-HYBRID SYSTEM. 45 FIGURE 10. RAD23A INTERACTS WITH KIAA0101 IN VIVO. 46 FIGURE 11. KNOCKDOWN OF KIAA0101 SENSITIZED CELLS TO UV. 48 FIGURE 12. WESTERN BLOT ANALYSIS THE EXPRESSION LEVEL OF THE RAD23A-BINDING PARTNER XPC. 49 FIGURE 13. DNA SYNTHESIS DECREASE WAS OBSERVED IN KIAA0101-KNOCKDOWNED CELLS UNDER UV IRRADIATION. 50 6. REFERENCES 51 | |
dc.language.iso | en | |
dc.title | KIAA0101在細胞週期及DNA修復之角色 | zh_TW |
dc.title | The role of KIAA0101 in cell cycle progression and DNA repair. | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許輝吉,周涵怡,張?仁,葉秀慧 | |
dc.subject.keyword | 增殖細胞核抗原,修復,細胞週期,複製,紫外光, | zh_TW |
dc.subject.keyword | KIAA0101,PCNA,repair,cell cycle,Rad23A,UV irradiation, | en |
dc.relation.page | 56 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-06-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 病理學研究所 | zh_TW |
顯示於系所單位: | 病理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。