Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44734
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊立(Jiunn-Lee Lin)
dc.contributor.authorJih-Min Linen
dc.contributor.author林繼敏zh_TW
dc.date.accessioned2021-06-15T03:53:48Z-
dc.date.available2010-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-07-01
dc.identifier.citationAbraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, Kocovic DZ, Packer M, Clavell AL, Hayes DL, Ellestad M, Trupp RJ, Underwood J, Pickering F, Truex C, McAtee P, Messenger J; MIRACLE Study Group. Multicenter InSync Randomized Clinical Evaluation. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002;346:1845-53.
Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Støylen A, Ihlen H, Lima JA, Smiseth OA, Slørdahl SA. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 2006;47:789-93.
Askenazi J, Alexander J, Koenigsberg D, Belic N, Lesch M. Alteration of left ventricular performance by left bundle branch block simulated with atrioventricular sequential pacing. Am J Cardiol 1984;53:99-104.
Bader H, Garrigue S, Lafitte S, Reuter S, Jais P, Haissaguerre M, Bonnet J, Clementy J, Roudaut R. Intra-left ventricular electromechanical asynchrony: a new independent predictor of severe cardiac events in heart failure patients. J Am Coll Cardiol 2004;43: 248-56.
Baldasseroni S, Opasich C, Gorini M, Lucci D, Marchionni N, Marini M, Campana C, Perini G, Deorsola A, Masotti G, Tavazzi L, Maggioni AP; Italian Network on Congestive Heart Failure Investigators. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: A report from the Italian network on congestive heart failure. Am Heart J 2002;143:398-405.
Blanc JJ, Etienne Y, Gilard M, Mansourati J, Munier S, Boschat J, Benditt DG, Lurie KG. Evaluation of different ventricular pacing sites in patients with severe heart failure: results of an acute hemodynamic study. Circulation 1997;96:3273-7.
Bleeker GB, Schalij M, Molhoek SG, Holman ER, Verwey HF, Steendijk P, van der Wall EE, Bax JJ. Frequency of left ventricular dyssynchrony in patients with heart failure and a narrow QRS complex. Am J Cardiol 2005;95:140-2.
Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 2000;1477:267-283.
Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, Carson P, DiCarlo L, DeMets D, White BG, DeVries DW, Feldman AM; Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure (COMPANION) Investigators. Cardiac-resynchronizationtherapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004;350:2140-50.
Cardin S, Li D, Thorin-Trescases N, Leung TK, Thorin E, Nattel S. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways. Cardiovasc Res 2003;60:315-25.
Cho GY, Chan J, Leano R, Strudwick M, Marwick TH. Comparison of two-dimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging. Am J Cardiol 2006;97:1661-6.
Cho GY, Song JK, Park WJ, Han SW, Choi SH, Doo YC, Oh DJ, Lee Y. Mechanical dyssynchrony assessed by tissue Doppler imaging is a powerful predictor of mortality in congestive heart failure with normal QRS duration. J Am Coll Cardiol 2005;46:2237-43.
Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L; Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005;352:1539-49.
Connolly SJ, Kerr CR, Gent M, Roberts RS, Yusuf S, Gillis AM, Sami MH, Talajic M, Tang AS, Klein GJ, Lau C, Newman DM. Effects of physiological pacing versus ventricular pacing on the risk of stroke and death due to cardiovascular causes. N Engl J Med 2000;342:1385-91.
Creemers EE, Cleutjens JP, Smits JF, Daemen MJ. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res 2001;89:201-10.
Desai AD, Yaw TS, Yamazaki T, Kaykha A, Chun S, Froelicher VF. Prognostic significance of quantitative QRS duration. Am J Med 2006;119:600-6
Deshmukh P, Casavant D, Romanyshyn M, Anderson K. Permanent, direct His-bundle pacing: a novel approach to cardiac pacing in patients with normal His-Purkinje activation. Circulation 2000;101:869-77.
Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000;106:55-62.
Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K,Lenhard T, Foged NT, Werb Z, Delaissé JM. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 2000;151:879-89.
Fedak PW, Smookler DS, Kassiri Z, Ohno N, Leco KJ, Verma S, Mickle DA, Watson KL, Hojilla CV, Cruz W, Weisel RD, Li RK, Khokha R. TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation 2004;110:2401-9.
Fedak PW, Verma S, Weisel RD, Li RK. Cardiac remodeling and failure: from molecules to man (Part I). Cardiovasc Pathol 2005;14:1-11.
Haghjoo M, Bagherzadeh A, Fazelifar AF, Haghighi ZO, Esmaielzadeh M, Alizadeh A, Emkanjoo Z, Sadeghpour A, Samiei N, Farahani MM, Sadr-Ameli MA, Maleki M, Noohi F. Prevalence of mechanical dyssynchrony in heart failure patients with different QRS durations. Pacing Clin Electrophysiol 2007;30:616-22.
Hayashidani S, Tsutsui H, Ikeuchi M, Shiomi T, Matsusaka H, Kubota T, Imanaka-Yoshida K, Itoh T, Takeshita A. Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol 2003;285:H1229-35.
Healey JS, Toff WD, Lamas GA, Andersen HR, Thorpe KE, Ellenbogen KA, Lee KL, Skene AM, Schron EB, Skehan JD, Goldman L, Roberts RS, Camm AJ, Yusuf S, Connolly SJ: Cardiovascular outcomes with atrialbased pacing compared with ventricular pacing: meta-analysis of randomized trials, using individual patient data. Circulation 2006;114:11-7.
Hsu CP, Huang CY, Wang JS, Sun PC, Shih CC. Extracellular matrix remodeling attenuated after experimental postinfarct left ventricular aneurysm repair. Ann Thorac Surg 2008;86:1243-9.
Januzzi JL Jr, Camargo CA, Anwaruddin S, Baggish AL, Chen AA, Krauser DG, Tung R, Cameron R, Nagurney JT, Chae CU, Lloyd-Jones DM, Brown DF, Foran-Melanson S, Sluss PM, Lee-Lewandrowski E, Lewandrowski KB: The N-terminal pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol 2005;95:948-54.
Karpawich PP, Justice CD, Cavitt DL, Chang CH. Developmental sequelae of fixed-rate ventricular pacing in the immature canine heart: an electrophysiologic, hemodynamic, and histopathologic evaluation. Am Heart J 1990;119:1077-83.
Karpawich PP, Rabah R, Haas JE. Altered cardiac histology following apical right ventricular pacing in patients with congenital atrioventricular block. Pacing Clin Electrophysiol 1999;22:1372-7.
Kass DA, Chen CH, Curry C, Talbot M, Berger R, Fetics B, Nevo E. Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation 1999;99:1567-73.
Lamas GA, Lee KL, Sweeney MO, Silverman R, Leon A, Yee R, Marinchak RA, Flaker G, Schron E, Orav EJ, Hellkamp AS, Greer S, McAnulty J, Ellenbogen K, Ehlert F, Freedman RA, Estes NA 3rd, Greenspon A, Goldman L; Mode Selection Trial in Sinus-Node Dysfunction. Ventricular pacing or dual chamber pacing for sinus node dysfunction. N Engl J Med 2002;346:1854-62.
Leclercq C, Gras D, LeHelleco A, Nicol L, Mabo P, Daubert C. Hemodynamic importance of preserving the normal sequence of ventricular activation in permanent cardiac pacing. Am Heart J 1995;129:1133-41.
Lee MA, Dae MW, Langberg JJ, Griffin JC, Chin MC, Finkbeiner WE, O’Connell JW, Botvinick E, Scheinman MM, Rosenqvist M. Effects of long-term right ventricular apica pacing on left ventricular perfusion, innervation, function and histology. J Am Coll Cardiol 1994;24: 225-32.
Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 2004;17:1021-9.
Li D, Shinagawa K, Pang L, Leung TK, Cardin S, Wang Z, Nattel S. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure.
Circulation 2001;104:2608-14.
Li YY, Feng Y, McTiernan CF, Pei W, Moravec CS, Wang P, Rosenblum W, Kormos RL, Feldman AM. Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 2001;104:1147-52.
Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 2000;46:214-24.
Lindsay MM, Maxwell P, Dunn FG. TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension 2002;40:136-41.
Maeda K, Tsutumoto T, Wada A, Hisunaga T, Kinoshita M. Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J 1998;135:825-32
Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, Omland T, Storrow AB, Abraham WT, Wu AH, Clopton P, Steg PG, Westheim A, Knudsen CW, Perez A, Kazanegra R, Herrmann HC, McCullough PA; Breathing Not Properly Multinational Study Investigators. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 2002;347:161-7.
Masson S, Vago T, Baldi G, Salio M, De Angelis N, Nicolis E, Maggioni AP, Latini R, Norbiato G, Bevilacqua M. Comparative measurement of N-terminal pro-brain natriuretic peptide and brain natriuretic peptide in ambulatory patients in heart failure. Clin Chem Lab Med 2002;40:761-3.
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006;69:562-73.
Nahlawi M, Waligora M, Spies SM, Bonow RO, Kadish AH, Goldberger JJ. Left ventricular function during and after right ventricular pacing. J Am Coll Cardiol 2004;44:1883-8.
Nielsen JC, Kristensen L, Andersen HR, Mortensen PT, Pedersen O, Pedersen AK. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: echocardiographic and clinical outcome. J Am Coll Cardiol 2003;42:614-23.
Nishikawa N, Yamamoto K, Sakata Y, Mano T, Yoshida J, Miwa T, Takeda H, Hori M, Masuyama T. Differential activation of matrix metalloproteinases in heart failure with and without ventricular dilatation. Cardiovasc Res 2003;57:766-74.
Olson MW, Toth M, Gervasi DC, Sado Y, Ninomiya Y, Fridman R. High affinity binding of latent matrix metalloproteinase-9 to the alpha2(IV) chain of collagen IV. J Biol Chem 1998;273:10672-81.
Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodeling. Nat Rev Mol Cell Biol 2007;8:221-33.
Periasamy M, Reed TD, Liu LH, Ji Y, Loukianov E, Paul RJ, Nieman ML, Riddle T, Duffy JJ, Doetschman T, Lorenz JN, Shull GE. Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+– ATPase isoform 2 (SERCA2) gene. J Biol Chem 1999;274:2556-62.
Periasamy M and Huke S. SERCA pump level is a critical determinant of Ca(2+) homeostasis and cardiac contractility. J Mol Cell Cardiol 2001;33:1053-63.
Pitzalis MV, Iacoviello M, Romito R, Massari F, Rizzon B, Luzzi G, Guida P, Andriani A, Mastropasqua F, Rizzon P. Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol 2002;40:1615-22.
Prinzen FW, Cheriex EC, Delhaas T, van Oosterhout MF, Arts T, Wellens HJ, Reneman RS. Asymmetric thickness of the left ventricular wall resulting from asynchronous electric activation: a study in dogs with ventricular pacing and in patients with left bundle branch block. Am Heart J 1995;130:1045-53.
Ravingerová T, Barancík M, Strnisková M. Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology. Mol Cell Biochem 2003;247:127-38.
Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC Jr: Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol 2002;40:976-82.
Rosenqvist M, Isaaz K, Botvinick EH, Dae MW, Cockrell J, Abbott JA, Schiller NB, Griffin JC. Relative importance of activation sequence compared to atrioventricular synchrony in left ventricular function. Am J Cardiol 1991;67:148-56.
Schnabel RB, Sullivan LM, Levy D, Pencina MJ, Massaro JM, D'Agostino RB Sr, Newton-Cheh C, Yamamoto JF, Magnani JW, Tadros TM, Kannel WB, Wang TJ, Ellinor PT, Wolf PA, Vasan RS, Benjamin EJ. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet 2009;373:739-45.
Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res 1998;82:482-95.
Spinale FG, Gunasinghe H, Sprunger PD, Baskin JM, Bradham WC. Extracellular degradative pathways in myocardial remodeling and progression to heart failure. J Card Fail 2002;8:S332-8.
Spinale FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 2002;90:520-30.

Spragg D, Leclercq C, Loghmani M, Faris OP, Tunin RS, DiSilvestre D, McVeigh ER, Tomaselli GF, Kass DA. Regional alterations in protein expression in the dyssynchronous failing heart. Circulation 2003;108:929-32.
Stambler BS, Ellenbogen K, Zhang X, Porter TR, Xie F, Malik R, Small R, Burke M, Kaplan A, Nair L, Belz M, Fuenzalida C, Gold M, Love C, Sharma A, Silverman R, Sogade F, Van Natta B, Wilkoff BL; ROVA Investigators. Right ventricular outflow versus apical pacing in pacemaker patients with congestive heart failure and atrial fibrillation. J Cardiovasc Electrophysiol 2003;14:1180-6.
Steinberg JS, Fischer A, Wang P, Schuger C, Daubert J, McNitt S, Andrews M, Brown M, Hall WJ, Zareba W, Moss AJ; MADIT II Investigators. The clinical implications of cumulative right ventricular pacing in the multicenter automatic defibrillator trial II. J Cardiovasc Electrophysiol 2005;16:359-65.
Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001;17:463-516.
Sweeney MO, Bank AJ, Nsah E, Koullick M, Zeng QC, Hettrick D, Sheldon T, Lamas GA; Search AV Extension and Managed Ventricular Pacing for Promoting Atrioventricular Conduction (SAVE PACe) Trial. Minimizing ventricular pacing to reduce atrial fibrillation in sinus-node disease. N Engl J Med 2007;357:1000-8.
Sweeney MO, Hellkamp AS: Heart failure during cardiac pacing. Circulation 2006;113:2082-8.
Sweeney MO, Hellkamp AS, Ellenbogen KA, Greenspon AJ, Freedman RA, Lee KL, Lamas GA; MOde Selection Trial Investigators. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 2003;107:2932-7.
Taylor JA, Morillo CA, Eckberg DL, Ellenbogen KA: Higher sympathetic nerve activity during ventricular (VVI) than during dualchamber (DDD) pacing. J Am Coll Cardiol 1996;28:1753-8.
Toff WD, Camm AJ, Skehan JD, UKPACE Investigators. Single chamber versus dual-chamber pacing for high-grade atrioventricular block. N Engl J Med 2005;353:145-55.
Thackray SDR, Witte K, Ghosh J, Nikitin N, Anderson A, Rigby A, Goode K, Clark AL, Clelan JGF. N-terminal brain natriuretic peptide as a screening tool for heart failure in the pacemaker population. Eur Heart J 2006;27:447-53.
Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial strain by Doppler echocardiography: validation of a new method to quantify regional myocardial function. Circulation 2000;102:1158-64.
Vanhoutte D, Schellings M, Pinto Y, Heymans S. Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc Res 2006;69:604-13.
van Oosterhout MF, Arts T, Bassingthwaighte JB, Reneman RS, Prinzen FW. Relation between local myocardial growth and blood flow during chronic ventricular pacing. Cardiovasc Res. 2002;53:831-40.
van Oosterhout MF, Prinzen FW, Arts T, Schreuder JJ, Vanagt WY, Cleutjens JP, Reneman RS. Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall. Circulation 1998;98:588-95.
Vernooy K, Dijkman B, Cheriex EC, Prinzen FW, Crijns HJ. Ventricular remodeling during long-term right ventricular pacing following His bundle ablation. Am J Cardiol 2006;97:1223-7.
Vernooy K, Verbeek XA, Peschar M, Crijns HJ, Arts T, Cornelussen RN, Prinzen FW. Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. Eur Heart J 2005;26:91-8.
Wang YC, Hwang JJ, Lai LP, Tsai CT, Lin LC, Katra R, Lin JL. Coexistence and exercise exacerbation of intraleft ventricular contractile dyssynchrony in hypertensive patients with diastolic heart failure. Am Heart J 2007;154:278-84
Wang J, Kurrelmeyer KM, Torre-Amione G, Nagueh SF. Systolic and diastolic dyssynchrony in patients with diastolic heart failure and the effect of medical therapy. J Am Coll Cardiol 2007;49:88-96.
Wang NC, Maggioni AP, Konstam MA, Zannad F, Krasa HB, Burnett JC Jr, Grinfeld L, Swedberg K, Udelson JE, Cook T, Traver B, Zimmer C, Orlandi C, Gheorghiade M; Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study With Tolvaptan (EVEREST) Investigators. Clinical implication of QRS duration in patients hospitalized with worsening heart failure and reduced left ventricular ejection fraction. JAMA 2008;299:2656-66.
Weber M, Hamm C: Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart 2006;92:843-9.
Wilkoff BL, Cook JR, Epstein AE, Greene HL, Hallstrom AP, Hsia H, Kutalek SP, Sharma A; Dual Chamber and VVI Implantable Defibrillator Trial Investigators. Dual chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA 2002;288:3115-23.
Yoshimura M, Yasue H, Okumura K, Ogawa H, Jougasaki M, Mukoyama M, Nakao K, Imura H. Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure. Circulation 1993;87:464-9.
Yu CM, Chau E, Sanderson JE, Fan K, Tang MO, Fung WH, Lin H, Kong SL, Lam YM, Hill MR, Lau CP. Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation 2002;105:438-45.
Yu CM, Chan JY, Zhang Q, Omar R, Yip GW, Hussin A, Fang F, Lam KH, Chan HC, Fung JW. Biventricular pacing in patients with bradycardia and normal ejection fraction. N Engl J Med 2009;361:2123-34.
Yu CM, Lin H, Zhang Q, Sanderson JE. High prevalence of left ventricular systolic and diastolic asynchrony in patients with congestive heart failure and normal QRS duration. Heart 2003;89:54-60.
Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000;14:163-7.
Zile MR, Blaustein AS, Shimizu G, Gaasch WH. Right ventricular pacing reduces the rate of left ventricular relaxation and filling. J Am Coll Cardiol 1987;10:702-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44734-
dc.description.abstract左心室收縮次序的異常因為會造成有協調性的左心室收縮無法維持而被認為是有害的,特別是在極度收縮次序異常的情況,如左隻完全傳導阻斷和右心室電擊刺激的情況。 這些傳導的障礙不但造成了不同步的心臟收縮也造成了不同步的心臟舒張,進而傷害的左心室的整體表現。 許多大規模的臨床研究也證明即使是在維持心房心室同步收縮的情況下,右心室電擊刺激會增加心房顫動的發生率和心衰竭住院的發生率。 雖然只有一小部分的病人在置放了右心室尖端電極導線的心臟節律器刺激後會產生心衰竭,有許多的觀察性研究已經發現右心室電擊刺激會對左心室的功能和型態產生有害的影響。
人工的右心室電擊刺激因為最早的啟動電極波是由右心室尖端經由局部心肌細胞像左心傳遞而不經由His-Purkinje system,而造成左心室的去同步化,這種不正常電波傳導的結果會造成左心室中隔會先收縮並且拉扯遠端尚未收縮的左心室側壁。 接著被拉扯的左心室側壁需要耗費更多的能量去收縮並拉扯已經收縮的其他部位。 這種不正常的拉扯是造成不良的組織再型化過程的關鍵因子。
在右心室尖端施予電擊刺激是用來治療心跳過慢的主要方式,但是在許多的大型臨床研究中已經證明會增加心衰竭的住院率。 在MOST這個大型臨床研究的子研究中也已經證明心衰竭發生的危險性和累積心室擊發的比率成正比,而和心臟節律器的模式是DDD或VVI沒有關係。 最近在新英格蘭醫學期刊發表的臨床研究也顯示,即使在原本收縮功能正常的心臟上,施予傳統右心室尖端電擊刺激會導致左心室射出率的下降和不良的左心室再型化,而這些不良的效應再施予心室節律器的那組病人並沒有出現。 這些臨床的發現暗示經由右心室電擊刺激引起的心室去同步化會引起較高比率的心衰竭發生率。 但是以正常結構心臟模是為研究基礎,右心室電擊刺激引起的的不良效應在分子學階段的證據仍然不足。
為了研究右心室電擊刺激所造成左心室不良再型化的效應,我們收集了116位因為心跳過慢而必須植入永久性心臟節律器的病人,包括80個竇房節功能失常和36個完全房室傳導阻斷的病人,其中76個是接受DDDR型心臟節律器 (其中40個是竇房結功能異常) ,40個是接受AAIR型心臟節律器 (全部都是竇房節功能異常) 。 這些病人都接受血漿中N端原生B型利鈉肽的測量和以心臟超音波測量左右心室間和左心室內機械性心臟不同步收縮的程度,同時在將其他臨床上各種相關因素加入,以回溯性方式做關聯性的研究。
DDDR組和AAIR組兩組病人的心血管功能在心臟節律器裝置之前是相似而沒有差別的,但是在經過平均3.5年的長期節律刺激後,DDDR病人血中N端原生B型利鈉肽的值為503±111 pg/ml,明顯高於AAIR 病人組的194±42 pg/ml,p值為0.002,我們以所有病人血漿中N端原生B型利鈉肽的最高四分位386 pg/ml為截斷值,當成潛在性心衰竭族群,以多變數邏輯性回歸分析探討發現,左右心室間不同步收縮的指標 (左右心室間收縮時間差) 是唯一的決定因素 (每10微秒,p值為0.01) 。 我們將其中8位是因為竇房節功能異常而裝置DDDR型節律器而且合併血中N端原生B型利鈉肽升高的病人,調整其心臟節律器的設定,拉長心房心室收縮延遲後,有效的降低了心室累計擊發的比率,這些病人血中N端原生B型利鈉肽的濃度也同時顯著的下降。
從以上的臨床實驗我們發現主要經由右心室電擊刺激造成的心室間不同步收縮,在具有正常基礎左心室收縮功能的一般病人上,長期DDDR模式右心室尖端電擊刺激後會導致血中N端原生B型利鈉肽濃度不正常的上升。
為了研究在左心室去同步化後,心室內心肌肥厚和心肌收縮相關蛋白表現的改變和細胞外間質再型化的變化,我們採用了一個以狗裝置右心房感應右心室擊發的動物研究模式。
總共六隻狗進行了雙腔室心臟節律器 (DDD) 植入和房室結的電燒灼術,實驗組接受了十二個星期的右心房感應右心室擊發的電擊刺激,我們以心臟超音波中的班塊追蹤技術來測量左心室不同步收縮的情形。 另外有四隻狗是對照組,接受假手術植入心臟節律器,但是心臟節律器維持在關閉的狀態。 經過了十二個星期的右心房感應合併強制右心室擊發的電擊刺激後,左心室被拿下來區分為左心室中隔和左心室側壁做進一步的分析。 心肌收縮相關蛋白,包括sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) 和phospholamban,心肌肥厚相關蛋白,包括 phospho-p38、phospho-ERK和phospho-JNK的表現,心肌細胞外間質再型化相關蛋白tissue inhibitors of metalloproteinase-1 (TIMP-1)、TIMP-3表現和matrix metalloproteinase-2 (MMP-2) 、MMP-9凝膠脢譜活性,心臟不同種類膠原蛋白的RNA表現,與及組織學的變化,在左心室內不同的相對位置做進一步的檢查和分析,以確認是否可能有因為右心室擊發引起的細胞外間質再型化。
在接受右心電擊刺激的實驗組和對照組相比,有明顯的電氣性心臟不同步收縮和機械性心臟不同步收縮。 在實驗組中最晚被啟動收縮的左心室側壁和對照組相比,sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) 的表現有23%的下降,phospholamban的表現則有32%的下降,但是,phospho-p38的表現有2.2倍的升高、phospho-ERK的表現有1.9倍的升高、phospho-JNK的表現則有3.6倍的升高,但是在最早收縮的左心室中隔,實驗組和對照組兩組之間收縮和肥厚相關蛋白的表現沒有顯著的差異。
在細胞外間質的分析方面,和對照組相比,實驗組的左心室側壁表現出明顯間質性纖維化的增加和心肌纖維的裂解,實驗組的纖維化比例為8.3 ± 1.5% 而對照組為3.9 ± 0.9%,P值小於0.01。 在實驗組的左心室側壁第二型膠原蛋白的訊息RNA表現和對照組相比有2.10 ± 0.70倍的顯著增加,P值小於0.01。 但是第一型膠原蛋白訊息RNA在實驗組的左心室側壁的表現雖然有增加,和對照組相比仍然未達統計上的意義。 凝膠脢譜活性測量發現在實驗組的左心室側壁和左心室中隔和對照組相比MMP-9的活性都增加了 (在左心室側壁,實驗組有1.88 ± 0.29倍的增加,P值為小於0.01;在左心室中隔,實驗組有1.45 ± 0.19倍的增加,P值小於0.01) , 但是MMP-2的活性只有在實驗組的左心室側壁增加 (1.58 ± 0.04 倍,P值小於0.01) ,在實驗組的左心室中隔和對照組相比並沒有顯著的差別。 免疫螢光染色的結果也確認在實驗組左心室側壁MMP-2和MMP-9的活性較對照組有顯著的增加。 另外TIMP-1和TIMP-3的蛋白表現在實驗組的左心室側壁較對照組也是有顯著的增加 (TIMP-1在實驗組左心室側壁有1.23 ± 0.16倍的增加,P值小於0.05;TIMP-3在實驗組左心室側壁有1.98 ± 0.27倍的增加,P值為0.01) 。
從以上的動物實驗結果可以發現,右心室尖端電擊刺激造成心肌收縮時間次序的不一致會引起左心室內不同部位蛋白表現的不一致性。 右心室尖端電擊刺激引起的左心室不同步收縮同時也引起左心室內不一致的細胞外間質再型化。 這些發現有助於我們了解左心室去同步化後引起的病理生理機轉。
zh_TW
dc.description.abstractActivation sequence abnormality in the left ventricle (LV) is considered harmful to the maintenance of orchestrated cardiac contraction, especially in patients with left bundle branch block and right ventricular (RV) pacing. The conduction disturbance creates both dyssynchronous contraction and relaxation of the LV that is harmful to LV global performance. Large clinical studies have demonstrated ventricular pacing is associated with increased atrial fibrillation and hospitalization for heart failure even with maintenance of atria-ventricular (AV) synchrony. Though only a proportion of patients develop heart failure after receiving RV apical pacing, several observational studies have reported detrimental effects of RV pacing on LV function and morphology.
Artificial right ventricle (RV) apical pacing creates LV desynchronization by initiating impulse from local myocardium and bypassing His-Purkinje system. The consequence of abnormal impulses conduction is LV septum contracts first and stretches the not-yet-activated remote LV lateral wall. The stretched LV lateral wall requires more energy to contract and stretch the other regions that are already activated. This abnormal stretching is a key mediator of the adverse tissue remodeling process.
RV apical pacing as a treatment modality for bradyarrhythmia has demonstrated to increase the incidence of heart failure hospitalization in many long-term clinical studies. The MOST trial demonstrated that the risks of heart failure development were proportional to cumulative ventricular pacing burden regardless of pacing mode. The recent study also reported traditional RV apical pacing resulted in a reduction in the LV ejection fraction and adverse LV remodeling in patient with pre-existing normal systolic function and these effects were prevented by biventricular pacing. These clinical findings implicate that ventricular desynchronization by RV apical pacing is associated with a higher incidence of heart failure development. But molecular evidence of RV pacing associated adverse effects based on a structurally normal heart model is still lacking.

To investigate the contribution of right ventricular (RV) apical pacing to the left ventricular (LV) negative remodeling, we measured the inter- and intra-ventricular mechanical dyssynchrony by echocardiography as well as plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) level in 116 consecutive patients of symptomatic bradyarrhythmias including sinus node dysfunction (SND) in 80 and atrioventricular block (AVB) in 36. DDDR pacemakers were implanted in 76 patients (SND, 40), and AAIR pacemakers in 40 (all SND). Clinical manifestations were retrospectively correlated.
After 3.5 years of chronic pacing, DDDR pacemaker patients demonstrated higher plasma NT-proBNP concentration (503±111 pg/ml) than AAIR patients (194±42 pg/ml, p=0.002) despite similar cardiovascular function in baseline. Multivariate regression analysis revealed that the only predictor of the highest quartile of plasma NT-proBNP, i.e.≧ 386 pg/ml, was the IVTD (per 10 msec, p= 0.01). Reprogramming to minimize ventricular pacing % in 8 patients of SND caused parallel reduction of plasma NT-proBNP.
Interventricular mechanical dyssynchrony, imposed mostly by RV apical pacing, could lead to abnormal heightening of plasma NT-proBNP concentration after chronic DDDR pacing in common pacemaker patients with normal baseline LV function.
To investigate contraction and hypertrophy-related protein expression changes and extracellular matrix (ECM) remodeling of the LV by desynchronization. We performed the animal study with atria-sensed RV apical pacing in dogs.
Six dogs underwent dual chamber pacemaker (DDD) implantation and AV nodal catheter ablation. The pacing group received atria-sensed RV apical pacing for 12 weeks. LV dyssynchrony was assessed with speckle tracking technique. Another 4 dogs was sham-operated for pacemaker implantation only and their pacemakers were kept as off status. After 12 weeks of atria-sensed obligatory RV pacing, LVs were separated into septum and lateral wall for analysis. Contraction-related protein, including sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and phospholamban, and hypertrophy-related protein, including phospho-p38, phospho-ERK and phospho-JNK expression, zymographic activity, including matrix metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitors of metalloproteinase-1 (TIMP-1), TIMP-3, collagen transcript expression, and histology were examined in opposite portions of the LV to identify possible ECM remodeling changes by RV apical pacing.
Both electrical and mechanical dyssynchrony were evident in RV paced dogs compared to sham-operated dogs. The late-activated LV lateral wall of paced dogs displayed a 23% reduction in the amount of sarcoplasmic reticulum Ca2+ ATPase, a 32% reduction in phospholamban levels, but a 3.6-fold increase in phospho-JNK expression, a 2.2-fold increase in phospho-p38, and 1.9-fold increase in phospho-ERK expression. There were no significant differences in the early-activated LV septum between paced and sham dogs.
For ECM analysis, compared with sham-operated dogs, increased interstitial fibrosis and fragmentation of myofibrils was found in the LV lateral wall in the pacing group (8.3 ± 1.5% in pacing group vs 3.9 ± 0.9% in sham group, P < 0.01);. Collagen type II mRNA showed a significant 2.10 ± 0.70 fold increase in the LV lateral wall in the pacing group (P < 0.01). While collagen type I mRNA was increased, the difference was not significant. Zymography demonstrated MMP-9 activity was enhanced in both the LV lateral wall and septum in the pacing group (1.88 ± 0.29 fold, P < 0.01 in the LV lateral wall and 1.45 ± 0.19 fold, P < 0.01 in the LV septum), but MMP-2 activity was enhanced in the LV lateral wall (1.58 ± 0.04 fold, P < 0.01). Immunfluorescence stain confirmed the activation of MMP-2 and MMP-9 in the LV lateral wall in the pacing group. Protein expression of TIMP-1 and TIMP-3 showed regional differences in the pacing group and both proteins were increased in the LV lateral wall (1.23 ± 0.16, P < 0.05 for TIMP-1 and 1.98 ± 0.27, P < 0.01 for TIMP-3).
Temporal dispersion of mechanical activation by RV apical pacing induced spatial dispersion of protein expression in the LV. LV dyssynchrony by RV apical pacing also elicits heterogeneous ECM remodeling in the LV. These findings assist in the elucidation of the pathophysiology of LV desynchronization.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:53:48Z (GMT). No. of bitstreams: 1
ntu-99-D91421007-1.pdf: 2147296 bytes, checksum: 8388c4bb7ab95387ab74d18e8babc93f (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要 ( 1 )
英文簡述 (Summary) ( 5 )
第一章 緒論 ( 9 )
第二章 研究方法與材料 ( 27 )
第三章 結果 ( 37 )
第四章 討論 ( 46 )
第五章 展望 ( 60 )
第六章 參考文獻 ( 67 )
第七章 圖表 ( 82 )
第八章 附錄 ( 108 )
dc.language.isozh-TW
dc.subject心臟節律器zh_TW
dc.subject心臟不同步收縮zh_TW
dc.subject心衰竭zh_TW
dc.subjectpacemakeren
dc.subjectdyssynchronyen
dc.subjectheart failureen
dc.title從心室節律刺激模式探討心臟不同步收縮與心衰竭的發生zh_TW
dc.titleCardiac Dyssynchrony and Heart Failure Development:Insight from a Pacing Modelen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee江晨恩,徐國基,楊偉勛,李啟明
dc.subject.keyword心臟不同步收縮,心衰竭,心臟節律器,zh_TW
dc.subject.keyworddyssynchrony,heart failure,pacemaker,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2010-07-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved